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Abstract

Accurate detection and analysis of rooftop solar Photovoltaic (PV) installations are cru-
cial for supporting the transition to sustainable energy. As the number of solar panel
installations grows, understanding their distribution is essential for grid management,
energy production forecasting, and effective policymaking. However, tracking solar pan-
els remains challenging due to their decentralized deployment across various locations
and the diversity of image data sources. This thesis aims to develop a robust, scalable
methodology for detecting solar panels using both aerial and satellite imagery, leverag-
ing advanced computer vision techniques. This study employs models such as You Only
Look Once version 5 (YOLOv5) to detect solar arrays from high-resolution aerial and
satellite images. The use of diverse datasets from sources including the Full Collection:
Distributed Solar Photovoltaic Array Location and Extent Data Set for Remote Sensing
Object Identification (FCDPA), Deep Solar, Solar Finder, and Vienna GIS data provides
a broad foundation for developing a detection method capable of handling varied image
resolutions and geographic locations. Data augmentation and adversarial training are
implemented to enhance model robustness against natural distribution shifts and en-
vironmental variations, ensuring high accuracy under different conditions like seasonal
changes and lighting variations. An important contribution of this work is the use of
model soups, where multiple trained models are combined to improve accuracy and
robustness. This approach achieves an accuracy of 95% across different image types,
presenting a cost-effective and scalable solution for estimating solar panel installations
on a global scale. Additionally, this research uses affinity and diversity metrics to assess
the models’ resilience, providing critical insights into their performance under various
data conditions. Furthermore, the study also provides an analysis of solar panel distri-
bution and growth in Vienna, Austria, from 2015 to 2020. However, it is important to
note a disclaimer regarding these findings: due to the lack of ground truth data for direct
validation, the presented estimates should be interpreted with caution. The results serve
as preliminary insights rather than definitive metrics, highlighting the need for further
data collection and validation efforts. Overall, this thesis offers a comprehensive method-
ology for detecting and monitoring solar PV installations, significantly contributing to
the field of renewable energy. Future research directions could explore the integration
of additional data sources, such as thermal imagery, and the development of more ad-
vanced machine learning models to further enhance detection capabilities under diverse
environmental conditions.
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Kurzfassung

Eine genaue Erkennung und Analyse von Solaranlagen auf Dächern ist entscheidend
für die Unterstützung des Übergangs zu nachhaltiger Energie. Da die Anzahl der
installierten Solarmodule wächst, ist das Verständnis ihrer Verteilung für das Netz-
management, die Vorhersage der Energieproduktion und eine effektive Politikgestal-
tung unerlässlich. Allerdings bleibt das Tracking von Solarmodulen aufgrund ihrer
dezentralen Installation an verschiedenen Standorten und der Vielfalt der Bilddaten-
quellen eine Herausforderung. Diese Arbeit zielt darauf ab, eine robuste, skalierbare
Methodik zur Erkennung von Solarmodulen mithilfe von Luft- und Satellitenbildern zu
entwickeln und dabei fortschrittliche Techniken der Computer Vision zu nutzen. Diese
Studie verwendet Modelle wie You Only Look Once version 5 (YOLOv5), um Solarar-
rays in hochauflösenden Luft- und Satellitenbildern zu erkennen. Die Verwendung ver-
schiedener Datensätze aus Quellen wie dem Full Collection: Distributed Solar Photo-
voltaic Array Location and Extent Data Set for Remote Sensing Object Identification
(FCDPA), Deep Solar, Solar Finder und den GIS-Daten von Wien bietet eine breite
Grundlage für die Entwicklung einer Erkennungsmethode, die mit unterschiedlichen Bil-
dauflösungen und geografischen Standorten umgehen kann. Um die Robustheit der
Modelle gegenüber natürlichen Verteilungsschwankungen und Umweltveränderungen zu
erhöhen, werden Datenaugmentation und adversariales Training implementiert, um eine
hohe Genauigkeit unter verschiedenen Bedingungen wie saisonalen Veränderungen und
Lichtverhältnissen zu gewährleisten. Ein wichtiger Beitrag dieser Arbeit ist die Verwen-
dung von Model Soups, bei denen mehrere trainierte Modelle kombiniert werden, um
Genauigkeit und Robustheit zu verbessern. Dieser Ansatz erreicht eine Genauigkeit von
95% über verschiedene Bildtypen hinweg und bietet eine kosteneffiziente und skalier-
bare Lösung für die Schätzung von Solar-Photovoltaic-Installationen weltweit. Darüber
hinaus führt diese Forschung Affinitäts- und Diversitätsmetriken ein, um die Wider-
standsfähigkeit der Modelle zu bewerten und wichtige Einblicke in ihre Leistung unter
verschiedenen Datenbedingungen zu geben. Die Studie bietet auch eine Analyse der
Verteilung und des Wachstums von Solar-Photovoltaic-Anlagen in Wien, Österreich,
von 2015 bis 2020. Es ist jedoch wichtig, einen Disclaimer für diese Ergebnisse zu
beachten: Aufgrund des Fehlens von Ground-Truth-Daten für eine direkte Validierung
sollten die präsentierten Schätzungen mit Vorsicht interpretiert werden. Die Ergeb-
nisse dienen als vorläufige Einblicke und nicht als definitive Metriken und unterstre-
ichen die Notwendigkeit weiterer Datenerhebungs- und Validierungsbemühungen. Ins-
gesamt bietet diese Arbeit eine umfassende Methodik zur Erkennung und Überwachung
von Solar-Photovoltaic-Installationen und leistet einen bedeutenden Beitrag zum Bere-
ich der erneuerbaren Energien. Zukünftige Forschungsrichtungen könnten die Inte-
gration zusätzlicher Datenquellen, wie z. B. thermischer Bilder, und die Entwick-
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lung fortschrittlicherer Modelle des maschinellen Lernens zur weiteren Verbesserung der
Erkennungsfähigkeiten unter verschiedenen Umweltbedingungen erkunden.
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1 Introduction

In this section, we discuss the motivation and the main contributions of this thesis
followed by a detailed road map.

1.1 Background and Motivation
In recent years, the global transition towards solar power for residential and commercial
use has gained significant momentum. This shift is driven by the urgent need to address
the environmental impact of fossil fuels, which continue to dominate the world’s energy
production. Fossil fuels are a major contributor to climate change, as can be seen in
Figure 1.1. Data from the Gravity Recovery and Climate Experiment (GRACE) satellite
mission between 2004 and 2010 shows marked variations in polar ice mass, particularly
during the winter months in the northern hemisphere.

Figure 1.1: Polar ice mass variation over the years. Source: [82]

An extended analysis from 1990 to 2020 offers a significant negative trend in ice
mass balance across Greenland and the Antarctic regions, with a particularly noticeable
loss in the Greenland ice sheet. While East Antarctica and the Antarctic Peninsula
have experienced slight gains in mass over the past three decades, East Antarctica’s
mass balance has remained relatively constant with minor fluctuations. Average trends
from the Ice sheet Mass Balance Inter-comparison Exercise (IMBIE-2) data confirm a
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widespread reduction in polar ice, which is linked to rising sea levels. The exponential
growth of sea levels, particularly in the latter half of the study period, mirrors the
compound effects of ice melt on ocean volumes.

These findings highlight the urgent need to mitigate climate change by reducing our
reliance and strong dependency on fossil fuels. One possible solution would be the
adoption of renewable energy sources, particularly solar energy. Solar power harnesses
sunlight to generate electricity through PV cells, helping us reduce the need for fossil
fuels. The deployment of solar panels significantly decreases the emission of harmful
air pollutants such as sulfur dioxide, nitrogen oxides, and particulate matter, which
are prevalent in coal and natural gas plants. This transition not only enhances air
quality but also conserves water resources, as solar power generation requires minimal
water compared to the cooling processes of conventional thermal power plants. The
widespread adoption of solar panels alongside wind turbines represents a crucial step
towards releasing and hindering the environmental pressures on air and water resources
while promoting sustainable energy practices.

The urgency of transitioning to sustainable energy is additionally underlined by Earth
Overshoot Day. In 2023, humanity reached Earth Overshoot Day on August 2, the date
when we exhausted the planet’s capacity to regenerate its renewable resources for the
year. This implies that we are consuming resources at a rate that would require 1.7
Earths to generate annually [77]. This alarming rate of resource consumption underscores
the critical need for spreading the adoption of renewable energy sources to reduce the
environmental impact and promote sustainability.

Solar energy has became more affordable and the technology behind it improved dra-
matically in recent years. Swanson’s Law, which describes the economic trend of pho-
tovoltaic modules, indicates that the price of solar modules tends to drop by 20% for
every doubling of cumulative shipped volume. This trend is illustrated by the substantial
decrease in prices from $76.67 per watt in 1977 to $0.36 per watt in 2014, making solar
energy increasingly accessible and affordable.

However, a significant challenge remains in accurately tracking and analyzing the
adoption of solar panels. Traditional methods, such as public surveys, are often costly,
time-consuming, and inefficient. Satellite and aerial imagery present a more effective
and efficient alternative for data collection. Despite this, detailed statistics on solar
panel adoption, efficiency, and output are often aggregated with other renewable energy
sources, lacking the information and granularity needed for specific analysis.

The primary motivation for this research is to develop robust methods for detecting
solar panels using satellite and aerial imagery. Accurate detection is essential for under-
standing the distribution, capacity, and other details about solar panels, which is crucial
for informing policy-making and supporting the broader adoption of renewable energy.
By the use of advanced computer vision algorithms, this research aims to identify so-
lar arrays from diverse image sources with varying resolutions from different areas and
parts of the world. This approach not only facilitates the estimation of the number of
solar panels but also provides a scalable and cost-effective solution for finding the exact
positions of solar panel installations globally.

Furthermore, this research seeks to enhance the robustness of detection algorithms un-

14



der various environmental conditions and architectural variations. Given the diversity of
environmental factors, such as seasonal changes and weather conditions, the algorithms
must be resilient to natural distribution shifts. The research explores the use of model
soups, where the weights of multiple models are combined in different ways to improve
accuracy and robustness. This approach aims to increase the reliability of solar panel
detection, even under adverse conditions.

Ultimately, this work aims to provide a comprehensive and scalable method for obtain-
ing reliable estimates of solar panel installations, contributing to the transition towards
sustainable energy sources and mitigating the adverse effects of climate change. By ad-
vancing the accuracy and robustness of solar panel detection, this research supports the
broader goals of environmental sustainability and energy efficiency.

1.2 Research Questions and Objectives

With the continuing expansion of solar Photovoltaic PV arrays all over the world, the
problem of forecasting the loads on the electricity grid becomes difficult. The traditional
predictive models often struggle to generalize across different regions, especially in areas
where labeled data is unavailable and where environmental and architectural factors
differ significantly. The central issue this investigation is trying to solve is how to develop
a reliable model that will work anywhere, including regions with varying landscapes,
cities with unique architectural peculiarities, and during all seasonal changes.

The primary objective of this work is to create a predictive model that is not only
accurate but also resilient to natural distribution shifts—these are changes in the data
distribution that occur due to differences in environmental factors such as landscape
variations, architectural styles, and seasonal effects. Current methodologies [122], [63]
and [75] are usually based on data augmentation, which attempts to enhance the variety
of the training set through synthetic means, such as rotation, scaling, and noise addition.
Although data augmentation can make the model more robust to a certain degree, it is
not enough to deal with the more complicated and natural distribution shift in the real
world.

Moreover, the project aims to explore the potential of the ”model soups” contribution
to increase robustness and accuracy in solar panel prediction. According to [119], model
soups exhibit a measurable impact on performance across different data distribution
scenarios. The research highlights their efficacy in improving outcomes over a broad
spectrum of datasets. Model soups have proven that they boost model performance
substantially on heterogeneous datasets especially when traditional methods fail. Using
both data augmentation and model soups the goal of this research is to create a model
that can accurately count the number of existing solar panel installations in any part of
the world with minimal labeled data and with large environmental variations. This study
has demonstrated that model performance is significantly affected by various distribu-
tion shifts, such as changes in local architecture, seasonal variations, or demographic
differences in the data. These shifts can introduce inconsistencies between training and
test data, resulting in reduced model robustness. By addressing these distribution shifts,

15



models can better generalize across diverse datasets and perform consistently in real-
world applications.

In essence, this project seeks to bridge the gap between the current capabilities of
predictive models and the practical need for a solution that can adapt to a wide range of
conditions. This work will help in making more precise and reliable solar energy forecasts,
a crucial step in the world’s transition to renewable energy sources, by concentrating on
the model’s robustness and generalizability.

1.3 Contributions
This work provides a comprehensive analysis of solar panel detection, focusing on es-
timating the number and growth of solar panels using a diverse dataset that includes
images from various regions and environments. The employed model, based on model
soups [119], facilitates the calculation of pixel-level coordinates and generates bounding
boxes. These coordinates are then translated into geographical locations using a pre-
trained YOLOv5 model. This approach allows for precise localization of solar panels
with exact geographical precision.

This model provides a very high degree of accuracy, up to an overall detection accuracy
of 91% within the mixed dataset of different landscapes, architectural styles, and seasonal
conditions. Furthermore, the integration of the model soup technique proved to be quite
effective. Model soups add another 4% accuracy beyond what was achievable using single
models alone, enhancing robustness and effectiveness of the model in handling natural
distribution shifts. This further underlines the potential of model soups in establishing
the detection model as reliable and applicable over wide areas with diverse environmental
and architectural conditions.

1.4 Road map
This thesis continues by presenting a comprehensive review of the existing literature
and the broader context of the research in Section 2. Literature section provides an
exploration and challenges of prior work on solar panel detection. It also identifies gaps
in the current methodologies, setting the stage for the improvements of presented studies.
Following the literature review, Section 3 illustrates the methodological framework of
the research in this work. This section details the data sources, including the mixed
dataset used, which incorporates images from a variety of geographical regions with
differing architectural styles and environmental conditions. Besides that, some analytical
techniques are also presented, like the implementation of the YOLOv5 model along with
advanced techniques such as model soups. This therefore ensures that the model for
detecting solar panels is robust and accurate, hence a good basis for the future coming
analysis. Results of the experiments and their comparison against existing standards
are presented in Section 4. The section describes how well the model performed in
the mixed dataset, points out key findings and shows improvements achieved by this
approach. Special consideration was given to the model’s accuracy and robustness,
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taking into account various conditions that may exist within the dataset. Another factor
is how well the overall performance improved by enhancing the model with model soups
technique. Finally, Section 5 interprets the findings of the research study and discusses
their broader implications in the field of solar panel detection and renewable energy
forecasting. The discussion provides strengths and limitations of this approach, keeping
in mind how these could influence follow-up research and applications. An overview of
potential further studies in this direction is presented, along with the implications of
this work for improving both the accuracy and reliability of solar panel detection on a
global scale in real-world scenarios.
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2 Literature Review
The aim in this section is to analyze the literature and describe the main concepts used in
this work. An overview of solar panel detection from satellite imagery is provided in the
first part of the section. We also reviewed previous work on solar panel detection using
deep learning and computer vision techniques, and the last section focuses on improving
method robustness.

2.1 Overview of Solar Panel Detection from Satellite Images
Solar panel detection from satellite images has always been a challenging task, attract-
ing considerable attention due to its importance for monitoring and understanding the
renewable energy sector. This task is particularly complex due to factors such as varying
geometries of solar panels, differences in lighting conditions, and the presence of shadows
that can obscure the panels in images. These challenges have been addressed through a
range of techniques related to computer vision, remote sensing, and machine learning.

One of the most effective strategies for solar panel detection involves the use of con-
volutional neural networks CNNs [81]. Deep learning models, such as CNNs, enable
image recognition by learning to detect specific patterns from large amounts of labeled
image data.The training datasets for CNNs in tasks related to solar panel detection
include aerial and satellite images with manually labeled solar panels by human anno-
tators [3]. These models perform really well because they can grasp the distinct visual
appearance features of solar panels, such as shape, color, and reflectance, even under
challenging conditions, like shadows or complex angles of sunlight [105]. However, the
performance of CNNs can vary significantly depending on the quality and variability
of the data. Their generalization capability might be poor if the models were trained
on images taken from only one geographical region when applied to other regions with
distinctive architectural features or environmental conditions. Besides CNN, other deep
learning variants have also been attempted to improve the accuracy and robustness of
solar panel detection. Advanced architectures, such as the U-Net [100], which have been
designed for tasks related to image segmentation, proved to be quite effective in iden-
tifying and mapping solar panels over large areas. These models work in such a way
that they segment the image into parts and classify each segment as either containing
a solar panel or not. This is especially useful in complex environments where partial
obscuration of solar panels could take place or when they are badly distinguishable from
other objects. Beyond CNNs, traditional machine learning techniques like Random For-
est [7], Support Vector Machines (SVM) [19], and Logistic Regression [18] have also been
applied to this task. Random Forests are highly effective on high-dimensional data [7],
with detection accuracy benefiting from the combination of multiple decision trees. This
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approach minimizes overfitting and enhances the model’s ability to generalize to unseen
data. SVMs [89] are useful for distinguishing between image regions containing solar
panels by finding a hyperplane that separates the classes in a high-dimensional feature
space, which is especially effective when the data is not linearly separable. Logistic re-
gression [51] provides a simpler model, and by doing some effective feature engineering,
by selecting well-chosen panel characteristics, this model can work as a reliable baseline
for the detection of solar panels in both satellite and aerial imagery.

In a nutshell, the research area of solar panel detection from satellite imagery has
significantly benefited from the use of deep learning and computer vision. Employing
large and diverse datasets and complex models, such as CNNs and U-Net, researchers
have been successful in achieving ever-higher levels of accuracy and reliability in the
detection of solar panels, which in turn helps toward better monitoring and assessment
of solar energy installations worldwide.

2.2 Previous Work on Solar Panel Detection using Deep
Learning and Computer Vision Techniques

The field of research on solar panel detection using deep learning and computer vision
has considerably evolved since the automation and enhancement of the detection process
have created increasing awareness across many applications [87]. This section therefore
reviews previous works in the area with a focus on methodologies, key findings, and con-
tributions that these works have made to the broader context of analysis in PV systems.
This section offers a critical review of key works done in this area while highlighting
their methodologies, key findings, and their contributions.

One notable study [112] of the applicability of machine learning techniques in fault
detection for PV systems investigates different fault conditions at the PV module, com-
ponent, and system level. These may include electrical faults as well as visible defects
of solar panels. The paper emphasizes the applications of AI techniques, such as Fully
Convolutional Networks (FCNs) [69], Convolutional Neural Networks (CNNs) [81], and
Generative Adversarial Networks (GANs) [38] for intelligent fault diagnosis. Each one
of these models will be fed by a large dataset of images and data from sensors to be
obtained on PV systems, enabling the models to learn and understand the patterns
associated with different kinds of faults. The findings support fault detection for im-
provement and reliability in PV systems with the understanding that early detection of
faults may prevent huge energy losses and reduce maintenance costs.

Another useful contribution [61] is a study introducing an algorithm using deep learn-
ing for defect detection at solar panels. This approach reveals how defects in solar panels
are visible and can be identified through image analysis. Defects such as hidden cracks,
scratches, broken grids, black spots, and short circuits manifest visually on the surface
of the panels, making them detectable through advanced computer vision techniques.
This paper presents a revised version of the YOLOv5 algorithm [121], which has a Con-
volutional Block Attention Module (CBAM) [118] embedded to raise the detection of
common defects like hidden cracks, scratches, broken grids, black spots on the pan-
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els, and short circuits. The improved YOLOv5 algorithm [116] makes use of the CBAM
which allows it to focus on the most relevant parts of the image, thereby improving detec-
tion accuracy. It was trained and validated with public datasets and real-world datasets
from photovoltaic production lines. The algorithm shows strong potential for detecting
a wide range of defect types, even under challenging conditions. Results demonstrate
that this algorithm can detect small changes and defects, thus ensuring higher product
quality in automated production lines. Other projects [93], [35] focus on the detection of
photovoltaic panels and their mapping using ArcGIS [95] and deep learning. This work
involves the integration of deep learning with Geographic Information Systems (GIS) for
detecting and mapping PV panels across North Rhine-Westphalia using remote sensing
imagery.

The main goal of [24] was to train a neural network to automatically identify and map
PV panels. First, high-resolution satellite images had to be collected and annotated
in order to create a training dataset. Then, a neural network was trained to recognize
PV panels according to their shape, size, color properties, and brightening conditions in
different aspects. This system allows for adjustability to new locations and the addition
of other features, like wind turbines or streetlights. This addresses challenges related
to changes in color properties and optical deformation due to panel orientation, hence
making this a very robust solution for large-scale PV panel mapping.

DeepSolar [122] and SolarFinder [63] projects made the most notable contributions to
the area of solar panel detection. DeepSolar is a deep learning framework for identifying
and mapping solar panels across the United States from high-resolution satellite images.
The convolutional neural network is trained on a large labeled dataset of satellite images,
enabling accurate detection of solar panels across diverse geographical and environmen-
tal conditions. Contrary to this, SolarFinder does the detection and mapping for solar
panels using machine learning algorithms along with image processing techniques. Both
have shown a high accuracy of model predictions for the different parts of the US, but
the datasets come from the same provider, which puts questions on how robust these so-
lutions are to other datasets from other providers. In contrast, the studies [88], [49] have
demonstrated effectiveness by targeting specialized applications with highly customized
datasets. These datasets are often tailored to specific needs, such as airborne images
captured around selected areas of interest. This approach enables more precise detection
and analysis within specific contexts, ensuring that the methodologies are tailored to the
unique characteristics of the data. This often leads to poor detection performance on
other datasets and a range of different environments. Another approach [91] utilizes
thermal images captured by Unmanned Aerial Vehicle (UAVs) in the identification of
photovoltaic panel anomalies. In this methodology used by [112], UAVs equipped with
thermal cameras that capture images of PV panels are analyzed with machine learning
algorithms in recognizing hotspots and other anomalies that may indicate faults. While
this combination of image types can be helpful, thermal data are expensive and not
available for most regions of interest.

The most accurate contributions in this area originate from DeepSolar [122] and So-
larFinder [63]. Although both projects achieved major improvements in model accuracy
for the US, their datasets originate from the same source, which poses questions about
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the robustness of different datasets. Other research [91] has been successful within nar-
row domains using specific datasets—like airborne images focused on particular areas,
but these often perform poorly on different datasets and environments. Other projects
[91], [88], [49] make use of thermal images to detect photovoltaic panel anomalies. While
there is value in combining image types, thermal data is both expensive and not publicly
available.

Related
Work

Contributions Data Source Algorithms Focus

DeepSolar Detection framework
for residential solar
panels, using 7000
aerial images and
Inception-v3.

Aerial images FCN, Inception-v3 Residential ar-
eas

SolarFinder Utilizes satellite im-
agery and Open Street
Map pre-screening,
combining SVM, RBF,
and CNN.

Satellite im-
agery

K-means, SVM, RBF,
CNNs

Buildings

SolarNet Maps solar plants in
China with U-Net and
EMANet for various
environments.

Solar plant
(satellite) im-
ages

U-Net, EMANet Large plants,
complex envi-
ronments

Table 2.1: Condensed Summary of Frameworks

2.2.1 DeepSolar

DeepSolar [122] is one of the most widely referenced frameworks in the field of solar
panel detection, particularly in residential areas. This framework leverages state-of-
the-art deep learning techniques toward the analysis of satellite imagery to create a
comprehensive and accurate database of solar photovoltaic PV installations. This serves
as a critical framework, as the ability to generate an almost comprehensive map of
solar installations across the contiguous United States carries significant implications for
research, policy-making, and the solar industry.

The ground truth data for the DeepSolar project consists of 366,467 satellite im-
ages, selected to represent a diverse range of regions across the U.S., both rural and
urban residential areas. The dataset provides the backbone for training and testing
the model. Solar panel detection from satellite imagery is challenging, considering the
relatively small size of panels in high-altitude imagery; it can only be tackled by so-
phisticated algorithms. DeepSolar uses an FCN architecture that relies fundamentally
on the pre-trained Inception-v3 model [108], trained on 1.28 million images over 1,000
classes. Inception-v3 was deliberately chosen, allowing the framework to capitalize on
this pre-trained model’s capability to recognize intricate image patterns. This is done
by retraining only the final affine layer of the Inception-v3 model while fine-tuning the
other layers to adapt it to the specific task of solar panel detection. This fine-tuning
process gives way to the optimization of model parameters concerning the detection of
solar panels in aerial imagery, thereby increasing the precision and recall of the model.
Each image in the dataset is assigned a binary label denoting the presence or absence
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of solar panels, which forms the foundation of the classification task. To address the
challenge of segmenting solar panels from the background, the project employs a semi-
supervised approach. The model generates class activation maps (CAMs) based on
image-level labels, highlighting the regions most likely to contain solar panels. This
allows the model to accurately estimate the location and size of solar panels without re-
quiring extensive pixel-level annotations, significantly reducing the annotation workload
while maintaining high accuracy in detection and segmentation. DeepSolar starts with a
crucial preprocessing step that systematically enhances raw satellite images to improve
model performance. This includes applying noise reduction techniques and increasing
contrast to better distinguish objects within the images. Due to the nature of satellite
imagery, variations in perspective caused by angles and tilts can introduce distortion,
complicating the detection process. To mitigate these effects, image registration is per-
formed, aligning the images to ensure geometric consistency for further analysis. After
preprocessing, the pipeline proceeds to image segmentation using fully convolutional net-
works (FCNs). These networks excel at producing object maps that identify the precise
locations of segmented objects within an image, in this case, solar panels. This enables
more accurate identification of regions where solar panels are likely to exist. DeepSolar
further refines these segmentation results through post-processing, enhancing the overall
accuracy of object detection. This refers to the removal of false positives, where regions
were mistakenly identified to contain solar panels, and reduction of true negatives, which
are areas incorrectly marked as not containing solar panels. The steps described above
are visually represented in Figure 2.1 which illustrates the complete processing pipeline,
visually breaking down each critical step. From noise reduction and contrast enhance-
ment to image segmentation and post-processing, every stage is captured to show how
raw satellite data is transformed into accurate predictions of solar panel locations.

Figure 2.1: DeepSolar processing pipeline. Source: DeepSolar [122]
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The detected solar panels will then be grouped into separate buckets depending on
their shapes, sizes, and orientations. This categorization helps not only in refining the
detection process but also provides the model with enrichment by facilitating general-
ization capabilities across a wide range of solar installations. The final product of the
DeepSolar framework is a rigorously compiled database1 of installations of solar panels,
predominantly covering the contiguous United States. It provides very important infor-
mation on the gps location, size, and orientation of the detected solar panels, making it a
useful database for a wide variety of stakeholders. This dataset can therefore be used by
researchers to quantify trends in the adoption and deployment of solar photovoltaic sys-
tems, while the policymakers can leverage such insights in designing and implementing
better energy policies. On the other hand, the solar industry benefits from the capabil-
ity for ”informed identification of regions for new installations” and the optimization of
existing infrastructures.

Besides, the DeepSolar framework is made scalable and adaptive to be continuously
updated whenever new data becomes available. This ensures the database remains
current with any recent trends in solar deployment. The fact that this database would
be publicly accessible means that DeepSolar not only furthers the state of research in
solar energy but, therefore, also serves as one of the most important means for accelerated
evolutions toward more sustainable energy systems. The success of this project highlights
the effectiveness of combining deep learning with satellite imagery for analyzing existing
solar panel infrastructures.

2.2.2 SolarFinder

The SolarFinder [63] project is the state of the art in automatic solar PV array detection,
considering that it uses a large dataset and the most current and complex machine
learning techniques for improving the accuracy and scalability of the detection of solar
panels. The dataset that has been used in SolarFinder is composed of 269,632 satellite
images collected from 13 different geospatial regions of the United States, which are
representative of all kinds of environments and building types. This extensive dataset
is openly available and represents a very important source for further research and
development in the field.

The first step in the SolarFinder processing pipeline for such large satellite images
identifies just the building rooftops. This is achieved using data from OpenStreetMap
[80], which provides detailed building footprint information. By utilizing OSM data, So-
larFinder can effectively narrow its focus, within the images, to places where the chances
that the solar panels may be located are while significantly reducing the computational
resources for further processing steps. The segmented images containing only rooftop
areas are then processed with the K-means clustering algorithm [40]. This unsupervised
machine learning technique has been used in automatically segmenting rooftop images
at distinct contours by color, texture, and other visual features. The K-means algorithm
works by grouping pixels with similar characteristics into clusters, each cluster repre-

1https://deepsolar.web.app/
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senting a different object or feature on the rooftop that may be solar panels, chimneys,
or other units. The result of this clustering process is a set of contours, where each one
of them is a candidate to include a solar photo-voltaic array. With this aim, SolarFinder
sorts these contours for the presence of solar panels by adopting a hybrid machine learn-
ing model combining Support Vector Machine (SVM) using the Radial Basis Function
(RBF) kernel with Convolutional Neural Networks [52]. The features that are extracted
from these contours include the mean and standard deviation of grayscale values inside
the contour, the mean and standard deviation of the blue color channel, the ratio be-
tween the width and height of the contour and the number of edges and corners detected
inside the contour. Afterward, this set is fed to the SVM-RBF model for analysis. In this
regard, Principal Component Analysis (PCA) [54] has been employed to reduce dimen-
sionality, ensuring that only the most relevant features are utilized for the classification
task. PCA selects directions in data space that correspond to the features contributing
to the most variance therefore providing the most information to separate solar panels
from other objects. The CNN part of this hybrid model further refines the classification
process. In convolutional neural networks, there are multiple layers of convolutional
followed by rectified linear unit (ReLU) activation functions and pooling layers which
down-samples the input images. Initially, the input size fed to the CNN is 150x150 pix-
els. This size is sufficient to maintain processing efficiency while providing the necessary
resolution to accurately detect solar panels. The last set of features—shapes of lines,
textures, and patterns—are being extracted from these input images. The last two are
becoming more complex and characteristic of solar photo-voltaic arrays. The last set of
features is then used by the fully connected layers of the CNN to classify the contours as
containing solar panels or not. The last part of the classification process in SolarFinder
involves the combination of the outcomes from the SVM-RBF and the CNN models. It
first uses a linear regression model that assigns weights to the outputs of both models in
relation to their contribution toward the accuracy of classification. The linear regression
model greatly combines the complementary strengths of both the SVM-RBF and CNN
approaches, hence robustly classifying the contours more accurately.

Figure 2.2: SolarFinder processing pipeline. Source: SolarFinder [63]

The whole processing chain for SolarFinder, represented in Figure 2.2, has been cau-
tiously designed to be super-efficient and highly scalable; therefore, it enables the pro-
cessing of huge volumes of satellite imagery while detecting solar PV arrays over ex-
tensive geographical areas. This hybrid model then decides whether the contours are
solar panels based on an analysis of the contours from the previous steps, while the final
classification is done using the linear regression model. The entire pipeline is tuned to
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work with publicly available satellite imagery so that SolarFinder can be deployed in a
wide range of settings without having access to costly high-resolution data.

Apart from the solar PV array detection, SolarFinder does detailed profiling for every
detected array, estimating such attributes as panel size, orientation, and degree of shad-
ing. Size is estimated by counting the number of pixels within the identified contour,
multiplied by the area represented by each pixel, which in turn depends on the zoom
level and the location on Earth. An estimate of the orientation of the solar array would
be determined by the angle between the Minimum Bounding Rectangle (MBR) [55] of
the contour and the real orientation of the rooftop, providing crucial information, that
energy generation from the solar array would strongly depend on the orientation and
shading of the panels.

In general, SolarFinder is a huge stride in the domain of detection of solar PV arrays.
This is indeed a scalable and accurate solution to the problem of identifying and profiling
solar installations using freely available satellite imagery. In this regard, the proposed
hybrid approach for SolarFinder combines the strengths of both SVM and CNN models.
Thus, it can effectively discriminate between solar panels and other rooftop objects in
challenging environments with either low or regular-resolution satellite images.

2.2.3 SolarNet

SolarNet [47] is a deep learning-based framework that charts solar power plants across
China from space using large-scale satellite imagery. The primary function of SolarNet is
to detect and map solar farms automatically, which holds great importance in the man-
agement of solar energy resources across China. This framework successfully identified
439 solar farms, which were built on nearly 2,000 square kilometers-an expanse as wide
as the city of Shenzhen. This study represents one of the first large-scale applications of
deep learning to map solar farms in China and informs solar power companies, market
analysts, and government agencies.

At the heart of SolarNet’s architecture is the Expectation-Maximization Attention
Networks (EMANet) [65], a deep learning model for semantic segmentation. The EMANet
strives in challenging environments for most Chinese solar farms, which are located in
deserts, mountains and even lakes. The EMANet module of SolarNet captures both
local and global information of satellite images and hence can segment the solar farms
from the background with high accuracy, even when the backgrounds are difficult to
process. The architecture of SolarNet also partly consists of the U-Net [101] model,
which is considered a well-known CNN model used for image segmentation. U-Net fea-
tures a symmetric architecture, consisting of a contracting path that captures contextual
information and an expansive path that facilitates precise localization, making it highly
suitable for pixel-level predictions. In contrast, U-Net only acts here as the baseline,
ensuring that the algorithm guarantees strong segmentation, while SolarNet enhances
it with the multitasking capability of EMANet, improving the accuracy by leveraging
both techniques. It was trained with different satellite images of sizes starting from 512
x 512 pixels to 10,000 x 10,000 pixels. Several data augmentation techniques used for
improving generalization of the model include random cropping, scaling and rotation.
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Performance is measured in terms of mean Intersection over Union (mIoU), and SolarNet
outperforms all the baseline models with a mIoU of 94.21%. Trained, SolarNet was used
to map solar farms across China, successfully detecting close to 500 farms. Most of these
were located in the northwestern regions with ideal conditions of the sun. Challenges
for SolarNet lie in cases of farms that are very similar to their surroundings, point-
ing at future improvements like including more diverse data in training and employing
hyperspectral imagery for better detection.

In general, SolarNet marks a significant advancement in the automated mapping of
solar energy resources, showcasing the potential of deep learning in large-scale renewable
energy management. With further refinement, it could become an even more powerful
and indispensable tool for monitoring and optimizing solar power production globally.

2.2.4 Robustness in Solar Panel detection

Robustness is a key challenge for satellite and airborne imagery analysis, as these meth-
ods need to perform reliably in a wide range of conditions that can greatly affect their
accuracy. Some of the inconsistencies include changes in resolution, illumination, and
atmospheric conditions, such as clouds or haze, in the images taken from satellites that
could mask or distort the features that the given method tries to catch. Solar panels
can look quite different depending on the time of day, weather conditions, and how they
are installed. In desert areas, they must handle extreme heat and dust, while in cities,
they might be placed on rooftops where nearby buildings cause shading. On mountain
tops, they may be positioned at specific angles to catch more sunlight. These varying
environments and mounting methods not only change how solar panels look but also
affect their performance. This diversity highlights the importance of flexible detection
and monitoring systems to ensure efficiency across different settings. This can make it
hard for models to generalize since they may have been trained on data that does not
fully capture the range of possible conditions they will encounter in practice. Moreover,
due to the difference in orientation and tilt, the physical characteristics of solar panels
can be so different that it further complicates the detection and segmentation because
different materials are used for the panel surface [71]. In a complex environment with
a high level of vegetation, reflective surfaces, or an overlapping background of artificial
structures, there is more likelihood of misclassification. Both are challenges of impor-
tance that show up in the working of both the SolarFinder [63] and SolarNet [47] systems
for consistent detection through geospatial regions of different environmental complex-
ities. Consider the challenge faced by SolarNet when analyzing solar farms in China,
where the terrain varies significantly. This diverse landscape creates a complex and of-
ten confusing backdrop, making it more difficult for the models to differentiate between
solar panels and their surroundings. Moreover, the limited availability of training data
intensifies the robustness challenges. The model tends to become biased toward specific
environments or conditions where image data is readily available, leading to overfitting
on those scenarios in which it has been predominantly trained. Performance often suffers
when models are deployed into new contexts that are underrepresented in the training
set. The lack of variation in the training [56], [103] data often leads to overly special-
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ized models incapable of sustaining any reasonable degree of accuracy when confronted
with the entire range of scenarios that occur in reality. The need for robust methods to
cope with this variability is crucial for the reliability of an individual prediction and the
reliability and scalability of such technologies in application over large, varied regions.

2.3 Research on Improving Robustness of Deep Models
In deep learning, robustness refers to the ability of models to maintain consistent per-
formance across varying conditions and resist adversarial attacks. The robustness of the
model exhibits an ability that would be resilient against those uncertainties, errors, and
deviations encountered quite frequently in real-world applications. It becomes especially
critical in dynamic environments, where shifts in natural data distributions can cause
models to encounter out-of-distribution (OOD) scenarios, leading to significant drops in
performance if not handled properly [60], [26].

Out-of-distribution (OOD) refers to those scenarios where models are asked to make
predictions on data that differs significantly from the instances they were trained on.
Most of them work poorly in this respect. That is very important in tasks such as
satellite image analysis, where changes in the environment or seasonal conditions may
pose unexpected challenges. The model should be invariant to changes in weather or
geographic location when identifying solar panels, as many of these variations may not
be well-represented in the training set. This variability necessitates robust mechanisms
to ensure the model’s reliability. The best way to understand the complexity of OOD
scenarios is by comparing in-distribution (ID) and OOD generalizations. ID general-
ization refers to the performance of the model on data that is sampled from the same
distribution in which it was trained. On the other hand, OOD generalization is required
when the model is exposed to data that deviates from the training distribution.

A crucial distinction exists between a model’s accuracy on ID data and its robust-
ness to OOD data. While high ID accuracy signals the learning of training set-specific
patterns, the better OOD robustness would reflect the model performance in real-world
scenarios where conditions are far from being controlled. Therefore, modern research is
more geared toward bettering OOD robustness in order to make models resilient against
conditions that may not have been seen. Techniques like data augmentation and do-
main adaptation are at the forefront of efforts to improve this resilience by introducing
variability during training and encouraging the model to learn more generalized features
[60].

In the case of ID shifts, both the training and testing data share the same underlying
statistical distribution. Mathematically, ID shifts are represented as:

Ptrain(X, Y ) = Ptest(X, Y )

where Ptrain(X, Y ) and Ptest(X, Y ) denote the joint probability distributions of the train-
ing and testing data respectively. Concretely, suppose we have a model trained on some
subset of the DeepSolar dataset [22], but then it is tested on some other subset of that
very same dataset. This model has been tested under an ID shift. The model is expected
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to generalize effectively when the test data closely aligns with the characteristics of the
training data.

Various types of OOD shifts exist, each posing unique challenges. Covariate shift
occurs when there is a change in the marginal distribution of the inputs P (X), without
any disturbance in the relationship between inputs and labels P (Y |X). This can lead
to performance issues in machine learning models, as they may not adapt well to the
altered input distribution. For instance, a model which has been trained to recognize
solar panels when the sky is clear can be tested against images with cloudy conditions.
In this scenario, the shift in weather conditions altered the input distribution; however,
the underlying relationship between input features, such as the geometric structure of
the solar panels, and the corresponding labels remained unchanged. Consequently, label
shift is said to occur when the label distribution P (Y ) changes, but the conditional
distribution of the inputs given labels P (X|Y ) remains fixed. This can occur when a
model is trained in regions with a high density of solar panel installations but is tested
in areas where installations are less prevalent. Domain shift involves changes of both
the input distribution, P (X), and the conditional distribution, P (Y |X). Consider as a
good example a model that has seen only high-resolution satellite images for training;
at test time, lower-resolution images taken by another satellite are fed to the model. In
such a case, both the panel patterns and the image quality will differ.

Recent studie [92] have established that multimodality in the learning architecture
also benefits the models, combining various input data sources to improve OOD gener-
alization. As such, the CLIP model, trained using both image and text data, has shown
amazing robustness in handling distribution shifts. Such models learn to associate visual
information with textual information, hence generalizing better across diverse datasets
and domains.

In the following subsections, we will examine several key methodologies that improve
robustness in deep learning models, such as adversarial training, data augmentation
strategies, and the implementation of multimodal architectures.

2.3.1 Data Augmentation

Data augmentation is a powerful technique that enriches the training dataset by ap-
plying a variety of transformations—such as rotation, translation, scaling, and noise
addition—enhancing the model’s ability to generalize effectively. Generally, data aug-
mentation tries to increase the diversity of training data so as to make the model robust
against various variations in the real world.

Several data augmentation techniques have been considered and implemented to in-
crease model robustness. Random-angle rotation makes the model invariant to the ori-
entations that objects in the image may take. This is particularly useful when scenarios
place the subject in different orientations. Horizontal, vertical, or both translations shift
the object in the frame. This technique enables the model to recognize objects that
are not exactly in the center of an image. Scaling involves resizing the images through
zooming in or out. This variation makes the model handle different sizes of objects in
the images and hence makes it resilient in terms of scales. Adding random noise into
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the images makes the model strong against noisy data, which is quite a common case in
real-world scenarios. Addition of noise can particularly help models that have to work
in conditions where the environment is less controlled.

Empirical studies have shown that data augmentation techniques significantly upgrade
the performance and robustness of machine learning models. For example, Kim [57]
shows that rotations, translations, and addition of noise increased the accuracy of the
model in image classification problems by making it robust to real-world scenarios. Li
[64] also investigated the efficiency of data augmentation in generating high-dimensional
image data. Their work demonstrated that amplifications, such as scaling and rotation,
are useful in image creation, which increases diversity, hence improving the performance
of models involved in image-to-image translation.

Another recent paper by Rebuffi [94] aims at mitigating robust overfitting in adver-
sarial training with standard data augmentation schemes. A variety of methods, such
as CutMix [123] and MixUp [124], improve robust accuracy significantly when combined
with model weight averaging. CutMix is a data augmentation technique that differs
from Cutout [25] by not merely removing pixels from an image. Instead, it replaces
the removed regions with patches from another image, effectively blending parts of two
different images. This approach not only helps in maintaining the overall structure of
the image but also introduces additional variability in the training data, encouraging
the model to learn more robust features and improving its ability to generalize across
different scenarios. The ground truth labels are also mixed proportionally to the number
of pixels of combined images. Mixup is another data augmentation approach creating
a weighted combination of random pairs of images in the training data. AugMix [43],
proposed recently by Hendrycks [44], has become an efficient data processing method
using a combination of augmentations like rotation, translation, and channel mixing for
improving the robust performance of deep neural networks.

The referenced articles demonstrate that augmenting datasets through various trans-
formations introduces greater diversity in the data distribution, enabling models to be
trained on a broader spectrum of variations, which subsequently enhances their capacity
for generalization and improves robustness against overfitting.

2.3.2 Adversarial Training

One specially designed approach is the adversarial training method, which can help
enhance the robustness of machine learning models by training them on adversarial ex-
amples. The adversarial examples in this case are inputs that have been intentionally
perturbed to provoke incorrect predictions from the model. At training time, this ex-
position of the model to such adversarial attacks positions it to better withstand such
attacks at deployment.

The basic principle of adversarial training is a process for building adversarial ex-
amples and including them in the train set. As soon as the model has learned from
such challenging examples in addition to the original data, it will then be more robust.
Among the first studies on this, Goodfellow [39] introduces adversarial examples and
demonstrates that adversarial training helps make a model more robust. In this work,
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they introduced the Fast Gradient Sign Method (FGSM), which is applied to generate
adversarial examples by adding a small perturbation in the direction of the gradient of
the loss function concerning the input.

Recent improvements have been proposed to further optimize the adversarial training
methods. For example, Madry [74] proposed a method using Projected Gradient Descent
(PGD) for generating stronger adversarial examples. By definition, this approach itera-
tively perturbs the input, taking small steps in a gradient direction of the loss function
and projecting the perturbed input back into an allowed input space at each step. This
has gained wide adoption since it is pretty good at creating robust models.

To that end, Ma and Liang [72] designed an end-to-end adaptive-margin adversarial
training (AMAT) method. In contrast to SAT, where a fixed level of noise is injected, in
AMAT, adaptive adversarial noises are generated and are adaptive to individual training
samples. This dynamic adjustment helps keep the accuracy of the model unchanged on
clean data but improves robustness against adversarial attacks. Experiments on medical
image segmentation, landmark detection and object detection tasks showed that AMAT
outperformed SAT in both robustness and accuracy. The key idea of AMAT is to adapt
the magnitude of perturbation based on current model performance for each training
sample. In such a way, it keeps the amount of perturbation under very rigorous control;
hence, adversarial training becomes more effective.

It is possible to apply common data augmentation schemes to adversarial training to
mitigate robust overfitting, as proposed by Rebuffi [94]. Techniques such as CutMix and
MixUp, discussed in the previous section, significantly improved robust accuracy when
combined with model weight averaging. CutMix, as described earlier, augments image
data by replacing removed regions with patches from another image, instead of simply
removing pixels as in Cutout. Ground truth labels are proportionally mixed based
on the number of pixels from the combined images. MixUp, also previously covered,
creates a weighted combination of random pairs of training images to enhance data
diversity. Additionally, Hendrycks [44] introduced AugMix, a data processing strategy
that leverages diverse augmentations to further strengthen the robustness of deep neural
networks.

There is empirical evidence from many studies that shows the efficacy of adversarial
training as a means to improve the model’s robustness. For example, Tramer [111]
studied how the models trained with adversarial examples work against adaptive attacks.
Their results showed that adversarial training noticeably boosts robustness against most
attacking approaches. They also highlighted the ongoing advancements in adversarial
training methodologies to keep pace with emerging attack techniques.

To conclude, techniques for the adversarial training of machine learning models are
one of the cornerstones in increasing robustness. In the process, adversarial examples
help make models resistant to malicious attacks. Improvements, among them adaptive-
margin adversarial training and further innovations that have taken place with the incor-
poration of data augmentation methods, make this strategy much more effective. Future
research will be in a position to further investigate new strategies for the optimization
of adversarial training and its applications in various domains. Continued improvement
of the methods of adversarial training is key to ensuring and enhancing security and
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reliability in real-world applications of machine learning models.

2.3.3 Ensamble Methods

Ensemble methods are techniques through which models could be combined to reduce
variance and enhance robustness. In such techniques, one would take advantage of the
fact that different models may be able to capture different aspects of the data distribu-
tion. This is potentially very powerful, increasing model accuracy and generalizability.
Basic strategies in the use of ensembles include bagging, boosting, and stacking [78];
each strategy has its own way of fusing outputs from different models into a more robust
model.

Bagging, or Bootstrap Aggregating [29], means training several instances of a model on
different subsets of the training data. Basically, these subsets are created through boot-
strapping. At the end, predictions from these individual models are combined—usually
by averaging in regression tasks or majority voting in classification tasks. It helps in re-
ducing variance and can be applied to avoid overfitting. Breiman [6] introduced bagging
and showed how it minimized model variance and increased the robustness of models.
Bagging is especially useful for high-variance algorithms like decision trees; with random
forest, several trees are combined to create one much more accurate and stable model.

Boosting [8] is another very effective way of ensembling. It trains models sequentially,
and each new model corrects the errors of previous models. The final predictions are a
weighted sum of all the predictions. Probably the most well-known boosting algorithm
is that proposed by Freund and Schapire [30], who significantly improved model perfor-
mance by iteratively readjusting weights on the training samples based on the errors of
prior models. Gradient Boosting generalized it into the optimization of a loss function
in an iterative way, introduced by Friedman [31], which made it a robust approach for
both classification and regression. The boosting methods have been applied to a number
of fields, from finance and healthcare to marketing, due to the fact that the combination
of weak learners gives very accurate models.

Stacking, also known as Stacked Generalization [117], involves training multiple mod-
els whose predictions are combined as inputs to a second-level model, commonly referred
to as a meta-learner. The second-level model will learn how to combine base models’ pre-
dictions in the best possible manner. Wolpert [117] introduced stacking, which has had
great success in most cases, improving model performance by capturing the strengths of
different algorithms. Stacking is a flexible method, and it can be applied to any com-
bination of models; for this reason, it has gained significant popularity in competitions
and practical applications where predictive performance is maximized.

Versatile studies [76], [120], [13] have demonstrated the advantages of ensemble meth-
ods in varied applications. For example, Wyatt [120] applied ensembling methods with
the purpose of improving the robustness of deep learning models on ecological data. In
this respect, the authors were able to demonstrate an increase in robustness to noise,
outliers, and better prediction accuracy due to the ensembling of several models. Casado-
Garćıa and Heras [13] developed an independent ensemble algorithm for object detection
that is applicable regardless of the underlying model applied for detection. Their ap-
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proach reached performance improvements of up to 10% when predictions of different
models were aggregated and test-time augmentation applied.

Certified robustness [62] refers to formal guarantees about a machine learning model’s
resilience against adversarial attacks. These guarantees ensure that the model behaves
reliably within a specified range of input perturbations, providing a mathematical as-
surance that small changes in input won’t lead to incorrect predictions or classifications.
Jia [50] investigated methods for improving a model’s robustness against an adversarial
attack by ensembles. They found out that ensembles give much better defense mecha-
nisms and improve the bounds for certified robustness compared to individual models.
This work points out the potential of ensemble methods in making machine learning
systems much more safe and reliable.

Ensemble methods have been applied with success to improve the robustness of models
in practical applications. For example, Casado-Garćıa and Heras [13] implemented an
ensemble method that combines the output of different object detectors, improving the
accuracy of object detection and reducing false positives in object detection. In the
approach, there is included a test-time augmentation procedure intended to improve the
performance of models by applying a variety of transformations to the test images and
appropriately combining all the predictions.

Another notable application is in ecological data analysis, where Wyatt [120] used
ensemble methods to improve the robustness of deep learning models against noisy and
incomplete data. By combining multiple models, they were able to achieve more reliable
and accurate predictions, which are crucial for ecological monitoring and conservation
efforts.

This flexibility and efficiency of ensemble methods make them very useful in modern
machine learning. They not only enhance the predictive performance but also improve
model robustness and reliability. Future work on ensemble methods can focus on in-
vestigating more sophisticated techniques such as Dynamic Ensemble Selection (DES)
[58] and hybrid ensembles [14]. DES selects the most competent models with respect to
each input instance from an ensemble, by which it improves prediction accuracy through
emphasis on the models that perform best in the local region of the feature space. In
contrast, hybrid ensembles combine several ensemble methods or different types of mod-
els to improve performance by harnessing all their advantages in constructing a more
robust and adaptive predictive model. Both techniques are trying to enhance ensemble
learning either by fitting model use to the right conditions or applying complementary
methods.

Ensemble methods can improve the robustness and performance of any machine learn-
ing model. It can combine the strengths of different models and apply bagging and boost-
ing to ensembles to reduce variance, avoiding overfitting and improving generalizability.
Ensemble methods have seen continuous improvements in pushing the edge on what
might be realized in Machine Learning, therefore becoming an important component for
developing any robust Machine Learning strategy. Future work can be devoted to more
sophisticated ensemble strategies, with their applications over a wide range of divergent
domains, thus strengthening the role of ensemble methods in advanced machine-learning
practice.
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2.3.4 Robust Loss Functions

Robust loss functions are designed to be less sensitive to outliers, making models more
resilient to noisy data. Traditional loss functions like Mean Squared Error (MSE) can
be heavily influenced by outliers, leading to suboptimal performance. Robust loss func-
tions address this issue by modifying the loss calculation to reduce the impact of these
anomalies. Prominent examples include the Huber loss and quantile loss, among others.

The Huber loss, introduced by Huber [48], comes in handy in regression tasks where
data contains outliers. It is a combination of the good properties from Mean Squared
Error (MSE) and Mean Absolute Error (MAE); it is quadratic when the error is small,
and linear when the error is large. This duality enables the Huber loss to handle outliers
more gracefully than MSE. Formulation for the Huber loss goes as follows:

Lδ(a) =
{1

2a2 for |a| ≤ δ,

δ(|a| − 1
2δ) for |a| > δ,

where δ is a hyperparameter that determines the point where the loss function tran-
sitions from quadratic to linear.

Quantile loss, another robust loss function, is particularly useful for tasks where the
goal is to predict a specific quantile of the target distribution, such as in quantile regres-
sion. This loss function is defined as:

Lτ (a) =
{

τa if a ≥ 0,

(τ − 1)a if a < 0,

where τ is the quantile being estimated. This approach is effective for dealing with
skewed distributions and outliers, providing a more nuanced understanding of the un-
derlying data distribution.

Barron [2] provided a general and adaptive robust loss function that subsumes many
of the existing robust loss functions within one common framework. Through its pa-
rameters, this can change to MAE, MSE, Cauchy loss, etc., into other types of loss
functions. Added with this flexibility, it hence comes very handy in quite a range of
scenarios replete with large outliers or noisy data.

Recent work by Gonzalez-Jimenez [37] introduced T-Loss, a robust loss derived from
the negative log-likelihood of the Student-t distribution. It is a loss function for medical
image segmentation and does handling of outliers quite elegantly because of sensitivity
control through one parameter. This parameter itself gets updated during the process
of backpropagation without any extra computation or prior information on the level
and spread of noisy labels. Their experiments proved that the T-Loss outperformed
traditional loss functions in dice scores for skin lesion and lung segmentation tasks in
public medical datasets, thus proving it to be very effective in noisy environments.

Ghosh [34] benchmarked various robust loss functions against label noise for deep neu-
ral networks. Their paper showed that robust loss functions such as Generalized Cross
Entropy (GCE) and Normalized Generalized Cross Entropy (NGCE) obtained large im-
provements in model performance against noisy labels. These results make the loss
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functions particularly well-suited for quite diverse applications, like image classification
and medical diagnostics.

In the context of label noise, Ma [73] introduced normalized loss functions for deep
learning, which normalize gradient contributions to mitigate overfitting caused by noisy
labels. Their empirical studies demonstrated improved performance over traditional loss
functions, particularly in scenarios with high levels of noise.

In other words, strong loss functions are of prime importance in enhancing the ability
of machine learning models to become increasingly resilient to noisy and outlier-prone
data. The functions reduce sensitivity in the calculation of the loss due to extreme values
and keep model performance and robustness. Particular further research in the area of
robust loss functions is able to boost the reliability of machine learning applications in
diverse fields, such as medical imaging, finance, or autonomous systems.

2.3.5 Defensive Distillation

Defensive distillation is a technique intended to make neural networks robust against
adversarial attacks since it forces the model to output soft probabilities instead of hard
classifications. Initially developed for model compression, this method has proven useful
in enhancing both the safety and security of machine learning models.

Originally introduced by Papernot [85], the concept of defensive distillation requires
training a teacher model to create soft labels using a higher temperature parameter.
These labels are smoother probability distributions over classes and are utilized in train-
ing the student model. This helps in making the model less confident in its predictions,
which allows it to distribute probabilities more smoothly and makes it less sensitive
against adversarial perturbations. By smoothing the output probabilities, the model
becomes more difficult to manipulate through adversarial attacks, which typically rely
on exploiting sharp decision boundaries.

However, Carlini and Wagner [10] have pointed out weaknesses in defensive distillation,
showing that it is still possible to bypass adversarial attacks. They developed more
sophisticated attack algorithms that adjusted the input in such a way as to make even
defensively distilled models misclassify. For example, they showed that the targeted
attack on MNIST achieved a very high success rate of misclassification with only minimal
changes to the input.

Although the defensive distillation approach does have some limitations, the technique
remains an important milestone in the quest for developing robust machine learning
models. The approach has inspired further research into combining distillation with
other kinds of defense mechanisms to be able to develop more secure systems that can
be realized from later works by Papernot [86], [84].

In the context of domain adaptation, multiple techniques have been developed to adapt
models trained on a source domain to perform effectively on a target domain, improving
robustness and generalization. This section explores additional methods to complement
previously discussed techniques like ensemble methods, adversarial training, and robust
loss functions. These methods build on the core principles of feature alignment, domain
mapping, and minimizing domain shift.
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2.3.6 Model Adaption Methods

Different methods have been developed for domain adaptation, each of which adapts
models trained on a source domain to perform well on the target domain to improve
robustness and generalization. This section discusses more supplementary methods to
complement the previously discussed ensemble methods, adversarial training, and robust
loss functions. These methods are based on principles of feature alignment, domain
mapping, and minimizing domain shift.

Domain-Invariant Feature Learning (DIFL)

The key concept of Domain-Invariant Feature Learning (DIFL) [125] is to align the
feature distributions of the source and target domains in a manner that the model treats
the features of both domains similarly. The core assumption in this approach is that
there is a common feature space where both domains overlap. If the model learns to
represent data from both domains similarly, then the performance of a classifier trained
on the source domain will be effective on the target domain.

The Domain-Adversarial Neural Network (DANN) was proposed by Ganin [33] for this
challenge. The idea of DANN relies on adversarial training between a domain classifier
that can distinguish between source and target domain features and a feature extractor
trained to confuse this domain classifier to learn domain-invariant features. It is set
up in a way that there is competition between the feature extractor and the domain
classifier so that learned features are generalized across domains. The adversarial nature
of this method keeps the network in reduction of domains-specific information, enhancing
feature generalization.

Saito [102] subsequently proposed the Maximum Classifier Discrepancy method, which
applies two task-specific classifiers. These are allowed to maximize the discrepancy of
their predictions between source and target domains. Later, this discrepancy is mini-
mized for the feature extractor to be allowed to learn features suitable across domains.
It will induce the feature extractor to generate domain-invariant representations while
maintaining classifier attention to domain differences.

Multi-Level Adaptation

Multilevel adaptation addresses domain adaptation at different levels of abstraction on
the neural network. Its intuition is that domain differences might exist at multiple
levels; for instance, pixel-level differences regarding color or brightness, and feature-level
differences on texture or shape. Having these observations at many steps in the network
can help to reduce the domain shift.

Hoffman [45] suggests Cycle-Consistent Adversarial Domain Adaptation (CyCADA)
with a dual approach to adaptation. First, at the pixel level, CyCADA performs image-
to-image translation to map source images to match target images. For example, syn-
thetic images can be transformed to look in style like real-world images, reducing low-
level differences such as lighting or style. Then, at the feature level, it aligns the high-
level semantic features learned by the model. These range from low-level to high-level
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discrepancies, and by leveraging them in a multi-level fashion, CyCADA ensures do-
main discrepancies are at a minimum. This is reflected in its strong performance across
various tasks, such as semantic segmentation and object detection.

This is essentially based on the idea that high-level feature alignment may not be
enough in that it does not rule out the case where input images from different domains
could still be very dissimilar under this very same setting. Early-stage alignment at the
pixel level helps bridge domain gaps so that feature alignment can refine adaptation.

Batch Normalization Adaptation

Batch normalization (BN) normalizes the inputs of every layer to have zero mean and
unit variance, thereby stabilizing and speeding up the training of neural networks. How-
ever, in domain adaptation, these BN statistics (mean and variance) may be different
across source and target domains, thereby leading to degraded performance when the
model is applied to the target domain.

Li [66] addressed this by proposing Adaptive Batch Normalization, AdaBN, which
adapts batch normalization statistics w.r.t the target domain. Instead of using source
domain statistics for inference, the normalization layers of AdaBN update with target
domain statistics, hence effectively adapting the model without modifying the weights of
the training. Perhaps the most important advantage of AdaBN, however, is simplicity:
it requires no retraining of the model and yet greatly improves performance on the target
domain because it accounts for domain-specific statistical differences.

Carlucci [11] extended this concept into AutoDIAL: Automatic Domain Alignment
Layers. AutoDIAL introduced domain-specific alignment layers operating along with
the batch normalization. The layers will automatically adapt how much alignment is
performed at every step through the network so that the model can continuously handle
varying levels of domain shift. The underlying concept is to enable the model to learn
dynamically how much adaptation a given layer requires in order to enhance flexibility
and robustness.

Divergence Minimization

One of the major techniques for reducing domain shift is to minimize the difference
between the target and source domains. The idea here is to quantify the difference in
the two domains’ distributions and reduce this difference to a minimum, thereby pulling
the feature representations closer together.

One study [70] includes Maximum Mean Discrepancy (MMD) to calculate the dis-
tance between the mean embeddings of source and target domain data in a reproducing
kernel Hilbert space. Optimizing this distance will allow aligning the source and target
distributions in feature space. Being simple and achieving effective distribution align-
ment without adversarial training, MMD remains one of the most applied techniques in
domain adaptation.

Similarly, Shen [104] extended the DANN model with a modified domain classifier net-
work to learn the Wasserstein distance [83] between source and target distributions. The
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Wasserstein distance, also known as the Earth Mover’s Distance, calculates the amount
of ”work” that must be done to transform one distribution into another. Minimizing loss
in the transport problem of Wasserstein distance causes smoothness and stability of the
alignment of source and target domains, hence providing better adaptation performance.

Self-Ensembling Techniques

In certain domain adaptation scenarios, data from multiple source domains may be
available, and combining insights from these different domains can enhance the model’s
performance on the target domain. Co-training and multi-source adaptation aim to
leverage information from multiple domains to learn robust, domain-invariant represen-
tations.

Co-Training for Domain Adaptation (Co-DA), introduced by Kumar [59], does this by
training two different feature networks where each learns different aspects of the input
data. These complementary representations then co-regularize each other by the nature
of training, such that both networks must focus on different yet relevant features of the
data. This results in reducing overfitting to a single source domain while increasing ro-
bustness across domains. Further on, these are combined together in order to generalize
well on the target domain.

This was further extended by Zhao [126] using multi-source domain adaptation meth-
ods. When the target domain is formed by a combination or mixture of several source
domains-as may happen in speech recognition across different environments or speaker
variations-multisource domain adaptation looks at aligning all source domains to the
target. Adversarial methods that basically minimize the differences between the target
domain and each of the source domains individually are implemented. That makes this
model more robust by aligning the target domain to a range of source domains, hence
handling the variation in the unseen target data.

Multi-source domain adaptation demonstrates great performance in case the domain
shifts are not common for all data. In such cases, when the target domain can be
considered a mixture of several factors related to environmental or contextual conditions,
this can be taken into account. This approach robusts the models by learning from multi-
aspects to ensure that the target domain is well-represented across the learned feature
spaces.

2.3.7 Model Soups - increase robustness of deep models

Improving model robustness against both in-distribution (ID) and out-of-distribution
(OOD) shifts has seen significant progress through the application of a technique called
Model Soups, which effectively enhances performance across diverse data conditions
[119]. Taking several fine-tuned models and averaging their weights together into a single
model can result in a more robust model. Model Soup is based on an observation that
starting from the same initialization, deep learning models converge to the same region
in an optimization landscape even when fine-tuning with different hyperparameters.

One particular approach within this framework is the Unified Soup technique. This
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method involves averaging the weights of multiple models that were fine-tuned with
different hyperparameters, creating a single model that combines the knowledge from
all the fine-tuned models. This approach has the added benefit of not introducing any
additional computational cost during inference, as only one model is used. The following
algorithm outlines how Unified Soup is constructed:

Algorithm 1 Unified soup
Require: A collection of N models, each with different weights w1, w2, ..., wM

Ensure: A new model with weights that are the mean value of all models
1: Initialize an empty array W of size M
2: for i in range 1 to N do
3: Load the i-th model and read its weights wi,1, wi,2, ..., wi,M

4: for j in range 1 to M do
5: Wj ←Wj + wi,j

6: end for
7: end for
8: for j in range 1 to M do
9: Wj ←Wj/N ▷ Calculate the mean value of weight j

10: end for
11: Create a new model with weights W1, W2, ..., WM

12: return The new model

While Unified Soup offers an effective and simple solution to the problem of model com-
bination, a more sophisticated solution can be obtained by resorting to the Greedy Soup
technique. Unlike Unified Soup, Greedy Soup adds one model at a time to the mixture
but only if its addition improves the overall validation accuracy. It only includes the
models that contribute the most and, thus, create a stronger model that will not be
negatively impacted by suboptimal models. The process stops in the case when adding
further models reduces performance, meaning the final soup will be as strong as possible.

Algorithm 2 Recipe 1 GreedySoup
Require: Potential soup ingredients {θ1, ..., θk} (sorted in decreasing order of

ValAcc(θi))
Ensure: the Average of selected ingredients that maximizes ValAcc

1: Initialize an empty set of selected ingredients ingredients
2: for i = 1 to k do
3: if ValAcc(average(ingredients ∪ {θi})) ≥ ValAcc(average(ingredients)) then
4: ingredients← ingredients ∪ {θi}
5: end if
6: end for
7: return average(ingredients)

There are a few very important reasons why Model Soup works so well for improving
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robustness: Models trained from the same initialization usually converge to solutions
that are often similar; hence, averaging their weights will also yield an optimal model
performance. Model weight averaging is a kind of regularization that helps in smoothing
out overfitting, especially in OOD cases where test data might be quite different from
training data. This has a regularizing effect, whereby the model generalizes to data it
has not seen yet. Finally, diversity induced by fine-tuning with various hyperparameters
ensures that when weighing these models together, systematic errors by individual mod-
els are reduced. This combination of factors makes Model Soup a highly effective method
for increasing robustness to both in-distribution and out-of-distribution shifts. The idea
of Model Soups is related to ensemble methods, which combine predictions from multiple
models to improve overall performance. In general, several models, each trained with a
different setting, would independently make predictions, and the final output would be
determined through averaging or a vote on the individual predictions. It is understood
that in general, this enhances robustness due to variance reduction in model errors.
However, ensembling comes with a significant computational cost, as each model must
be evaluated separately during inference. Model Soup, on the other hand, ensembles at
the weight level and provides one model leveraging the knowledge of multiple fine-tuned
models. By averaging the weights of these models, a new model is generated that re-
tains the robustness advantages of ensembling without incurring the additional inference
costs typically associated with ensemble methods. This weight averaging approach en-
hances both in-distribution accuracy and out-of-distribution robustness, particularly in
test sets with OOD shifts, as it combines the strengths of multiple models into a single,
more generalizable solution.

2.3.8 Robustness measures

One of the most important metrics in machine learning, especially in applications like so-
lar panel detection, is robustness. It enables model reliability under different conditions,
including natural data shifts. Robustness is less concerned with achieving high accuracy
on the training data itself and focuses more on maintaining reliable performance on out-
of-distribution data. The primary objective is to ensure that models generalize well to
unseen scenarios and data shifts rather than overfitting to the training set. This per-
spective on robustness is crucial for practical applications, as it better reflects a model’s
real-world applicability. It emphasizes how well a model can adapt to and maintain per-
formance under distribution shifts, which is key for ensuring its effectiveness in dynamic
environments.

The robustness of a model m is measured by applying it to both the test set of its
training dataset D1 and an unseen dataset D2, yielding two accuracy measurements:
one on the native dataset and one on the naturally shifted dataset. This means that,
comparing two models ma and mb, we prioritize the model with a smaller gap between its
native and shifted accuracies. For example, a model with accuracynative(m) = 0.78 and
accuracyshifted(m) = 0.75 is considered more robust compared to another model where
accuracynative(m) = 0.88 but accuracyshifted(m) = 0.76, due to the smaller gap between
two datasets. Previous studies have evaluated robustness on synthetic distribution shifts
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[12], [32], [42], but recent work by Taori [109] highlights that current interventions for
robustness are less effective on natural distribution shifts.

Another study [20] introduces two measures for assessing robustness: Affinity and
Diversity. Affinity shows how far the augmentation of data shifts the position of data
around the decision boundary of the baseline model. It is calculated as a ratio of vali-
dation set accuracies for the model trained on clean data and tested on an augmented
validation set and accuracy tested on the same data without augmentations. The data is
separated into Dtrain and Dval, both drawn from the same distribution. Augmented val-
idation set D′

val is derived from Dval with applied stochastic augmentation techniques,
represented as D′

val = {(a(x), y) : ∀(x, y) ∈ Dval}. The model’s performance is then
evaluated on both Dval and D′

val, with the Affinity measure given by:

T [a; m; Dval] = A(m, D′
val)

A(m, Dval)
. (2.1)

A small value of T suggests the model is operating in an out-of-distribution scenario.
Ideally, the value of T should be close to 1, indicating optimal performance.

Diversity quantifies the complexity of augmentations, serving as a metric to empiri-
cally test the hypothesis that augmentations mitigate overfitting. This is achieved by
augmenting the training set with additional samples, thereby increasing its size and
diversity. The metric is computed as follows:

D[a; m; Dtrain] =
ED′

train
[Ltrain]

EDtrain [Ltrain] (2.2)

where ED′
train

[Ltrain] represents the final training loss on a model trained with a given
augmentation, and EDtrain [Ltrain] is the loss of the model trained on clean data.

Affinity and diversity are two essential elements in assessing model robustness. Affin-
ity refers to how well a model has internalized the patterns and regularities of the data
it was trained on. A highly affine model is closely fitted to these regularities, yielding
highly accurate results when tested on in-distribution (ID) data or data that closely
resembles the training set. The degree of affinity reflects the model’s ability to cap-
ture the underlying structure of the data, making it effective for tasks involving similar
data distributions. However, a model with excessive affinity might face challenges when
encountering out-of-distribution data, where robustness becomes crucial.

High affinity is not sufficient to guarantee robustness. While a model may perform
excellently when recognizing data it saw during training, it may fail when unfamiliar data
is presented. This brings in the importance of diversity. Diversity refers to the amount
and range of inputs that the model has been exposed to during training and testing. A
model exposed to more diverse data during training becomes more adaptable to new,
unexpected data points. This is because it learns to handle a broader range of input
scenarios, allowing for greater flexibility in making predictions on unseen data. Increased
exposure to variability helps the model generalize better, making it less reliant on specific
patterns from the training set and more capable of handling out-of-distribution data.

This balanced affinity and diversity imply that the model performs well both in fitting
the data it has seen during training and in generalizing to new, unseen data. As a result,
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the model becomes robust and can handle a wide range of data variations without a
significant drop in performance. In real-world applications, where data is rarely static
or predictable, this form of robustness defines true reliability. It ensures that models can
adapt and maintain their performance when faced with dynamic and unexpected data
variations. Robustness, in this context, is crucial for the long-term success of models in
real-world scenarios, where data distributions are often subject to shifts and fluctuations.

Problems arise if affinity and diversity are out of balance. A model, though having
high affinity, might have low diversity, resulting in overfitting to the training data and
only memorizing patterns from that set. This may cause poor generalization to data that
is dissimilar to what it has seen before. This is particularly problematic in applications
where input data varies significantly over time or across different environments, such as
solar panel detection under varying lighting conditions, weather, or angles.

On the other hand, low affinity with high diversity may result in a model becoming
overly sensitive to input variations. Such a model might exhibit inconsistent performance
as it becomes too responsive to data variations. Without a strong affinity to specific
patterns, the model may struggle to converge on a stable understanding or consistent
perspective, leading to poor performance on augmented or transformed datasets.

The goal is to optimize both affinity and diversity to ensure accuracy not just for
specific data but also for new data groups. For example, in solar panel detection, a robust
model should identify panels under various environmental conditions or orientations.
Ensuring high affinity for appropriate detection in known conditions and high diversity
for adaptation to new conditions makes the model more reliable in real-world settings.

Ultimately, affinity and diversity together provide a more comprehensive view of model
performance. A model that scores high in both affinity and diversity will be better pre-
pared to handle complex, dynamic environments where data can change unpredictably.
This makes it valuable for practical applications, where robustness is as important as
accuracy.
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3 Methodology

This chapter describes the methodology used to detect solar panels from satellite images,
including the datasets used, the deep learning model used for detection, the data prepro-
cessing and techniques used to improve the robustness of the model, and the evaluation
metrics used to assess the performance of the models.

3.1 Pipeline

Next figure displays the pipeline used in this work.

Figure 3.1: Procssing pipeline
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This pipeline has a variety of datasets in its stream. Each is further differentiated by
several different properties that make it particularly useful for certain use cases within
the pipeline. There are two different streams of data within this pipeline, each tailored
with specific functionality. First, there is a stream of satellite images with the location
of solar panels represented as polygons with the geolocation encoded in the information
of the panel. Due to the fact that polygon shapes do not always fit perfect rectangles
because of the different panel orientations, bounding boxes are calculated instead. These
boxes supply the input feeding into YOLOv5 neural network models. he second data
stream, however, is powered by SolarFinder’s algorithm and showed poor performance
during initial testing when it relied on fixed class numbers for most images. There is no
assurance, however, that changing these parameters would return accurate contour de-
tection for the panels. Sometimes, even after the detection of changes, they are grouped
with unrelated entities or not detected at all. Once the contour is located, then the
calculation of bounding boxes and relevant data is fed to the YOLOv5 model.

In general, this work proposes a multistep pipeline for solving the challenge of detecting
solar panels in satellite images. This pipeline uses several datasets with their very unique
properties and combines manual and automated techniques for detection and mapping
of solar panels. The resulting model enables insights into the effectiveness of various
detection methods and offers significant potential for real-world applications in renewable
energy.
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3.2 Dataset Description

This section provides details on the images and coordinates of solar panels collected
from various sources, including Google, Vienna GIS, and others, along with their main
characteristics. The resolution of Very High Resolution (VHR) satellite images ranges
from a minimum of 2 meters per pixel to as fine as 0.3 meters per pixel. Aerial images
typically offer higher resolutions due to their lower altitude flights. Conversely, LEO
(Low Earth Orbit) satellites operate at altitudes between 160 and 2,000 kilometers above
the Earth. The resolution of aerial images varies from a few centimeters to several meters,
depending on the flight altitude and camera specifications. This work utilizes several
publicly available datasets, including the Full Coverage Data for Photovoltaic Arrays
(FCDPA), GIS data for Vienna, SolarFinder (Google Satellite Images), and DeepSolar
(Google Satellite Images). In Figure 3.2, a sample from each dataset is shown.

Figure 3.2: Image samples showcasing different solar panel detection methodologies:
DeepSolar (top left), FCDPA (top right), GIS Vienna (bottom left), and SolarFinder
(bottom right).

3.2.1 Solar Finder

The SolarFinder dataset [63] comprises images from eight U.S. states displayed in Table
3.1, each with distinct environmental characteristics. These differences stem from urban
and rural regions, where rural regions feature objects like vegetation, and urban regions
are characterized by buildings.
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Location
Fresno, California

Palo Alto, California
San Jose, California

Adams, Colorado
Waukesha, Wisconsin

Springfield, Massachusetts
Minneapolis, Minnesota

Gilbert, Arizona
Baltimore, Maryland
Seattle, Washington

Table 3.1: Locations in Solar Finder data

Data Description
Image Source Image Size Nr. of Images Number of Contours
Google 800x800 pixels 269,632 1,143,636

Table 3.2: Statistics for Solar Finder Data

It is important to note that the number of contours from Table 3.2 does not directly
correspond to the count of solar panels, as these contours may include other objects such
as vehicles, vegetation, and various complex structures extracted from the SolarFinder
images. Additionally, not every image listed in Table 3.2 necessarily depicts or contains
solar panels.

In the pre-processing stage, the houses have already been masked and excluded in the
images. This procedure adds value to the dataset, which contains large data on different
roof shapes and various solar panel installations. The method makes the detection of
the solar panels easier since it contains less clutter in the images, mainly the structure
of roofs. This is, however, not perfect because not all structures can be masked with
extreme accuracy, which makes this technique inappropriate for practical applications
in real life.

3.2.2 DeepSolar

The DeepSolar dataset [122], originating from the United States, encompasses four geo-
graphically diverse states as detailed in Table 3.3, thereby enriching the dataset with a
variety of image contexts. The data is sourced directly from Google, providing raw im-
agery available on Google Maps. In contrast to SolarFinder, which utilizes preprocessed
images, DeepSolar employs raw data.
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Location
Clark, Washington

Travis, Texas
Santa Clara, California
Los Angeles, California

Union, New Jersey
Hudson, New Jersey

Table 3.3: Locations in DeepSolar Data

Data Description
Image Source Image Size Data Amount Nr. of Panels
Google 320x320 pixels 45 GB 41,100

Table 3.4: Statistics for DeepSolar Data

The benefit of this dataset is in the wide coverage and distribution, providing a wealth
of mapped data (see Table 3.4), containing up to 45GB of data. However, there are
limitations. Firstly, it is exclusively based in the United States and that the great deal
of the data comes from California, which is 38% desert area. This climatic condition
probably does not offer the best setting for our project, but adds to the strength of the
model. Another point is that the data are binary-mapped, where ’1’ corresponds to the
presence of solar panels and ’0’ corresponds to their absence; there is no specific geo-
location information given. Mapping and labeling of the panel positions were therefore
done to improve the usability of the dataset, though this was only done on 2672 images.

3.2.3 FCDPA

The Full Collection: Distributed Solar Photovoltaic Array Location and Extent Data Set
for Remote Sensing Object Identification (FCDPA) dataset [5] is also sourced from the
U.S., specifically California (see Table 3.5). Although its geographical coverage is limited,
the dataset includes precisely drawn polygons of solar panels by human annotators,
pinpointing their exact positions in the images.

Location
Fresno, California

Stockton, California
Oxnard, California
Modesto, California

Table 3.5: Locations in FCDPA Data
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Data Description
Image Source Image Size Nr. of Images Number of Panels
Unknown 5000x5000 pixels 1,093 19,863

Table 3.6: Statistics for FCDPA Data

Solar panel detection algorithms can be well-trained on the FCDPA dataset, which has
extensive size and high resolution (see Table 3.6). Its extensive size and large resolution
provide many photos and annotated panels, an extensive and varied set of instances.
This goes very well in order to construct reliable machine learning models. But in this
case, already the high resolution of the dataset showed a big disadvantage. Real-world
imagery seldom reflects these images available in datasets, and very few images are
captured at this resolution worldwide. Hence, models trained on this dataset might
perform poorly on low-resolution photos or images that carry fewer distinctive features,
and the generalization ability of the models is significantly reduced. This impedes its
application value in a real-world setting.

3.2.4 GIS Vienna

Aerial images from Vienna comprise this dataset, which includes images from different
years and seasons, representing a natural distribution shift beneficial for robustness
testing. The GIS data, sourced from government records, includes high-resolution images
similar to the FCDPA dataset, yet lacks pre-mapped classifications, presenting a plain
dataset.

Data Description
Image Source Image Size Nr. of Images Number of Panels
GIS Vienna 416x416 pixels 113,403 per year 290

Table 3.7: Statistics for GIS Vienna Data

A manually-labeled subset of this dataset yielded 290 solar panels for analysis, rep-
resenting a small portion of the total dataset (see Table 3.7). This manual mapping
process was essential to create a usable dataset for training and testing solar panel
detection algorithms.

3.2.5 Mixed Dataset - Data Preparation and Splitting

In this work, data preparation and splitting for the various models followed structured
methodologies designed to optimize the training, validation, and testing processes for
solar panel detection algorithms. Various models in this study were based on an 80:10:10
split, where 80% is used for training, 10% for validation, and 10% for testing. However,
depending on a number of model types and their requirements, different methods have
been applied.
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With YOLO, which needs training on images with annotated polygons in order to
accomplish object detection, the idea was to construct the training dataset from the
available polygon-mapped data. This would involve images from both SolarFinder and
FCDPA since both come with pre-annotated polygons of solar panel polygons. These
datasets were quite ideal for the object detection tasks of YOLO, given the detailed an-
notations which are used to precisely detect bounding boxes. A portion of the DeepSolar
dataset, which was manually self-mapped, was incorporated to increase the diversity of
the training data. Since the original DeepSolar dataset lacked polygon annotations for
solar panels, manual mapping was performed to create the necessary polygons, enabling
its use for YOLO training. This step was crucial in expanding the dataset, allowing
the model to learn to detect solar panels across a broader range of geographical and
environmental conditions, thereby improving its robustness.

However, the GIS Vienna dataset was reserved exclusively for the validation phase.
The dataset was manually annotated and was used to test the model’s performance
on completely unseen data. The GIS Vienna dataset introduced a more significant
distribution shift, as it included images taken across multiple seasons and years, resulting
in considerably greater variation compared to the original training data. This temporal
and environmental diversity posed a substantial challenge for the model, requiring it
to adapt to a broader range of conditions. This was used only as a validation set in
this work, in order strictly to challenge the generalization capability of the model in a
new environment and test its robustness under realistic scenarios where seasonal and
environmental changes are encountered.

In the cases of all three VGG, Random Forest, and Logistic Regression models, which
have been used for binary classification rather than object detection, the entire dataset
was utilized. All these models do not require the polygon annotations since their task
was to classify if the image contains solar panels or not, so they can use the entire
dataset including those without annotations as well. In this case, the split was applied
once again, incorporating all available images from the SolarFinder, DeepSolar, FCDPA,
and GIS Vienna datasets for the models addressing the simpler binary classification task
during the training phase. By using all the available data sources in this particular
binary classification problem, it enables the binary classification models to use a larger,
more varied training set. This was especially helpful to ensure better generalization
across regions, resolutions and environmental conditions since the models were trained
on such a diverse set of images.

The YOLO model was trained only on the polygon-annotated dataset, supplemented
with hand-mapping of extra data from DeepSolar, and tested on previously unseen
data from GIS Vienna to check for generalization. The models designed for binary
classification—VGG, Random Forest, and Logistic Regression—were used consistently
with an 80:10:10 split. This approach ensured comprehensive coverage of all data sources,
enhancing the robustness of the results. It also allowed each model type to be trained
and tested optimally, ensuring their effectiveness and ability to generalize well to new
data.
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XXXXXXXXXXMethod
Dataset SolarFinder DeepSolar FCDPA GIS Vienna

YOLO (OD) 80:10:10 80:10:10 (MM) 80:10:10 Validation (100%) (MM)
VGG (BC) 80:10:10 80:10:10 80:10:10 80:10:10
Random Forest (BC) 80:10:10 80:10:10 80:10:10 80:10:10
Logistic Reg. (BC) 80:10:10 80:10:10 80:10:10 80:10:10

Table 3.8: Overview of dataset usage across different methods. OD: Object Detection,
BC: Binary Classification, MM: Manually Mapped for YOLO in DeepSolar and GIS
Vienna datasets.

3.3 Description of the Models
This study employs a diverse set of machine learning/DNN models to achieve the de-
sired research goals. While certain models, namely VGG, Random Forest, and Logistic
Regression, have been previously implemented [63] within the context of the research
area, novel models such as You Only Look Once version 3 (YOLOv3) and YOLOv5 are
also incorporated and evaluated in this work.

3.3.1 Random Forest

A machine-learning algorithm, like the Random Forest Classifier, makes a number of
decision trees to predict the outcome. This technique is more accurate and reliable than
using a single tree, due to the fact that it averages the output from several individual
trees. In this work, we have used the classifier with 100 estimators creating 100 decision
trees. This choice of 100 trees provides a reasonable middle ground between computa-
tional efficiency and high accuracy. Although adding trees to the model may improve
its performance, the marginal gains are generally observed to decrease, making 100 a
realistic decision when empirically supported by data. The maximum depth of each tree
is constrained to be at most two to avoid overfitting. Under such a constraint, each tree
should be simple enough so that it is able to handle new information. It also uses class
balancing in order to deal with issues such as imbalanced datasets, where particular
classes might be overrepresented or underrepresented in the training set. The model
makes sure that all classes are equally represented by dynamically changing weights in-
versely proportional to class occurrence, which has the potential to improve its predictive
accuracy in several scenarios. This makes the Random Forest Classifier a reliable and
versatile machine-learning tool.

3.3.2 VGG

Among the most used CNN models, the VGG16 architecture [126] was first proposed for
the classification task of large-scale images. Its efficiency comes from a simple deep struc-
ture that is comprised of 16 layers, of which 13 are convolutional and 3 fully connected.
All the convolution filters in this model are of size 3x3, enabling the capture of both
low-level fine details and higher-level patterns within the images. This makes the model
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particularly effective for tasks requiring detailed feature extraction, such as solar panel
detection. To identify solar panels, VGG16 is very helpful when applied through transfer
learning with pre-trained weights on the ImageNet dataset [23]. In other words, it allows
the model to initialize parameters that are optimized for general features of images and
further tune such weights to learn solar panel identification in satellite images. This
reduces the requirement of big datasets of a particular task, hence increasing efficiency
along with accuracy. Keras deep learning framework [17] supports pre-trained model
integration and their adaptation for task-specific applications in an efficient way. Where
VGG16 is concerned, the architectural approach rests on small 3x3 convolution filters
followed by ReLU (Rectified Linear Unit) for activation-introducing the ’non-linearity’
effect in the model. This non-linearity may provide a better capability of learning com-
plex patterns made of edges, shapes, and textures of solar panels. Max-pooling layers
downsample the feature maps on the spatial dimensions so that higher-level features can
be captured with reduced computational burden. It can very well portray the bound-
aries of solar panels if they are on a rooftop along with other things such as a chimney
or window. VGG16 is ideal for segmenting and identifying solar arrays because it is
very deep and able to make critical feature extraction from satellite images. It has a
powerful geometrical pattern recognition and feature extraction that makes the accuracy
in detection very high for solar panels on various rooftop configurations with different
lighting conditions.

Aspect Details
Model Depth VGG16 consists of 16 layers (13 convolutional, 3 fully

connected).
Filter Size Uses uniform 3x3 filters for all convolutional layers.
Transfer Learning Utilizes pre-trained ImageNet [23] weights to expedite

training and improve accuracy.
Feature Extraction Effective at capturing essential features like edges and

textures crucial for identifying solar panels.
Computational Complexity VGG16 has 138 million parameters, making it compu-

tationally expensive.
Training and Inference Time Longer training and inference times due to the large

number of parameters.
Memory Requirements Requires significant memory resources, limiting its us-

age in resource-constrained environments.

Table 3.9: Summary of Advantages and Limitations of VGG16 in Solar Panel Detection

This table highlights both the advantages and challenges of using VGG16, particularly
in solar panel detection. The depth of the architecture and its ability to capture fine-
grained features make it highly effective for this task, but its computational demands
and slower inference times are its downside. To mitigate these challenges, several op-
timization techniques are employed. Data augmentation is commonly used to enhance
the dataset artificially by applying transformations such as flipping, rotation, and scal-
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ing. These transformations expose the model to a wider variety of input conditions,
improving its generalization ability and ensuring accurate detection of solar panels from
different perspectives, orientations, and lighting conditions.

3.3.3 Logistic Regression

Logistic regression [18] is a generalized linear model that is used to solve problems related
to binary classification. A given example is likely to belong to a particular class based
on an estimation of its input features. The logistic function, also known as the sigmoid

σ(x) = 1
1 + e−x

maps the result of a linear equation into a value between 0 and 1, which stands for the
predicted probability [46]. The particular advantages of this model occur when the re-
lationship between the independent variables and the dependent binary outcome, while
not strictly linear, could be well approximated by a log-odds relationship. One of the
strong sides of logistic regression is its interpretability: it is very easy to judge feature
importance directly from the coefficients of the model, since they reflect how the log odds
of the outcome change given a certain feature. This interpretation possibility, along with
simplicity, makes logistic regression a preferred method in solar panel detection where
a correct understanding of the influence of each separate feature may be critical. Also,
in high-dimensional space, it does not overfit as much compared to any other complex
model, whether a decision tree or a neural network. Regularization techniques, such as
L1 (Lasso) and L2 (Ridge), can be applied to prevent overfitting by penalizing large
values of the coefficients and adding to the model’s robustness [107]. Logistic regression
still finds a wide appeal in today’s age of more complex models because of its capability
to give reliable and decent predictions in most real-world, practical applications along
with being computationally effective [107]. Further to binary classification, logistic re-
gression can also be adapted for multiclass problems using one-vs-rest, or in a more
general setting, the multinomial logistic regression, expanding the use possibilities to
more complex classification tasks [46]. The aforementioned characteristics show it as a
strong foundational tool within the machine learning toolkit.

3.3.4 YOLOv3

Three essential parts make up the state-of-the-art convolutional neural network (CNN)
architecture of the YOLOv3 algorithm, which is executed by Ultralytics [97]. These
parts are the backbone, neck, and head. For reliable multi-scale feature extraction, its
backbone incorporates a Feature Pyramid Network (FPN) [67]. The head uses these
features for accurate object detection and bounding box prediction after the neck pro-
cesses them to improve representation [96]. With the help of this architecture, YOLOv3
demonstrates its resilience in object detection tasks by achieving a mean Average Preci-
sion (mAP) of 67.3% at an Intersection over Union (IoU) threshold of 0.5 [96]. Using the
following formula, one can calculate the overlap between the ground truth and predicted
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bounding boxes in terms of space:

IoU = Area of Union
Area of Intersection

Improved alignment between the predicted and actual object locations is indicated by
higher IoU values, which are essential for precise object localization [27]. By averaging
precision across various recall levels for every class in a dataset, Mean Average Precision
(mAP) assesses the overall performance of a model [28]. It displays the model’s accuracy
and recall, which are critical for determining how well it performs in different situations.
With 47.0 million parameters, the YOLOv3 model variant that is used, YOLOv3l, strikes
a balance between efficiency and accuracy.

3.3.5 YOLOv5
YOLOv5 [121] makes significant improvements in the architecture of CNNs for the task
of object detection. It is lightweight and efficient, building off the CSPDarknet to achieve
the best of both worlds in speed and accuracy. This was done by fine-tuning a balance
between several key architectural improvements that make the YOLOv5 architecture
very suitable for real-time applications such as autonomous driving, surveillance, and
robotics, where decisions are made in a split second.

One of the new novelties that YOLOv5 brings along with it are Cross-Stage Partial
(CSP) networks. This brings partial connectivity to the model. Unlike in previous ar-
chitecture where layers were all connected, YOLOv5 selectively connects them. It also
increases during a training to optimize gradients and enhance information flow across the
network [4]. This decreases computational overhead without sacrificing accuracy. There-
fore, YOLOv5 can be more efficient for large-scale object detection tasks when compared
to a fully connected network. The result is a model that is both computationally efficient
and powerful for large-scale object detection tasks.

Another feature of the YOLOv5 architecture is the incorporation of the Feature Pyra-
mid Network, FPN, to enhance this capability of object size variation detection through
multi-scale feature extraction. This becomes important in real-world applications, where
objects of interest can dramatically vary in size and detail. While the FPN itself is not
new, having been part of the earlier YOLOv3 model, in this instance its implementation
was fine-tuned to work in complete harmony with the CSP architecture. This allows the
network to capture features both at a fine and coarse level with much better detection
accuracy across complex scenes with multiple object types and sizes [67]. In that re-
gard, it enhances the adaptability and effectiveness of YOLOv5 for various applications,
ranging from small object detection to larger and more prominent targets. YOLOv5 has
notable performance improvements compared to its predecessors. The performance for
the model variation in use shows a mean Average Precision of 49.0% at an IoU thresh-
old of 50-95, an indication of a strong detection. In addition, YOLOv5 has some very
fast inference speeds-233.9 milliseconds on a CPU using ONNX, 1.86 milliseconds on an
A100 TensorRT GPU [121]. The combination of speed and accuracy for YOLOv5 makes
the detection algorithm really appealing for real-world applications because results can
come out fast but with high accuracy.
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Beyond the architectural changes, new training strategies advanced the performance
of YOLOv5 even further. The following additional features were added: multiscale train-
ing, mixed precision training, and auto-anchor optimization. Multiscale training allows
the model to change the size of input images dynamically during training, improving
generalization across a wide range of object sizes and scales. Mixed precision training
accelerates the learning process by allowing lower precision in certain operations while
reducing memory usage, yet maintaining accuracy. Meanwhile, auto-anchor optimiza-
tion fine-tunes the model’s anchor boxes for the best fit against ground-truth objects,
specifically when dealing with custom data. This is merely one of a few methods that
allow YOLOv5 to maintain high performance across an extremely wide scope of ap-
plications and environments, therefore increasing its versatility and robustness. Other
aspects where YOLOv5 does better, bounding box prediction adds up with more con-
volutional layers and uses a fixed-size, fixed-scale box estimation strategy to improve
the accuracy of the position and size of the detected objects. Such accurate localization
will make YOLOv5 handle diverse and challenging environments, starting from partially
occluded and overlapped objects to difficult lighting conditions, while detecting objects
accurately. The performance of YOLOv5 further illustrates its robustness and adaptive-
ness to various deployment conditions. Whether deployed on high-performance GPUs
or on edge devices, which generally have low computational power, YOLOv5 gives the
right balance of speed and accuracy. This scalable nature enables the algorithm to ex-
cel across a wide range of real-world scenarios, from high-demand applications such as
autonomous driving to more resource-constrained environments where edge computing
is necessary. Moreover, the robustness towards changes in environmental factors such
as lighting, occlusions, and motion proves its feasibility in real-world applications. The
conclusion would be that YOLOv5 is a great jump from the older versions of YOLO due
to its increased efficiency, speed, and accuracy. Architectural changes such as adding
CSP networks and, most importantly, the refined use of FPN contribute much to the
extremely good performance of this model both in controlled and complicated environ-
ments. Rich training strategies and a strong design make YOLOv5 fit modern object
detection tasks, providing reliability and precision where it is needed most.

Table 3.10 presents the architectural and methodological differences between YOLOv3
and YOLOv5. This comparison explains how each iteration of the YOLO model frame-
work was changed to overcome the challenges in real-time object detection. This com-
parison of features brings out light on neural network design and improvements in per-
formance metrics.
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Table 3.10: Key Differences Between YOLOv3 and YOLOv5
YOLO version YOLOv3 YOLOv5
Neck No CSP structure CSP-PAN (Path Aggregation

Network)
Data Augmenta-
tion

Random flips, scaling, color
space augmentations

Mosaic, Copy-Paste, Random
Affine, MixUp, Albumenta-
tions

Bounding Box
Loss

IoU Loss Complete IoU (CIoU) Loss

Speed Optimiza-
tion

Faster than RetinaNet and
SSD but no specific speed op-
timizations

SPPF replaces SPP for faster
processing

Multiscale Predic-
tions

3 scales, using Feature Pyra-
mid Networks (FPN)

3 scales, with CSP-PAN for
improved multi-scale predic-
tions

Grid Sensitivity
Reduction

No grid sensitivity reduction Bounding box prediction for-
mula reduces grid sensitivity

Training Strate-
gies

Traditional training Hyperparameter evolution,
mixed precision training,
EMA, cosine LR scheduler

Parameter Count 47 million parameters Varies by model size (small
to large options for speed-
accuracy trade-offs)

Inference Speed 51 ms on a Titan X (YOLOv3-
608)

Faster than YOLOv3, notable
speed gains with SPPF
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3.3.6 Later versions of YOLO

From YOLOv6 to YOLOv10, the continuous development of the YOLO series has
marked one milestone after another in real-time object detection. Each version came
with a set of fresh changes in every respect: architecture, optimization and ability to
make it appropriate for real-world-large-scale applications. Each of these YOLO versions
has emerged from papers on advancement research.

YOLOv6 improved multi-scale feature propagation, enhancing the accuracy of object
detection—specifically the detection of objects such as solar panels—across different
resolutions [68]. This is ideal for applications in satellite and aerial imagery where
there is a variation in resolution depending on distance and sensor quality. YOLOv6
also kept CSPNet for the improvement of the gradient flow. It introduces Mosaic data
augmentation that enables the model to generalize much better through different images
by combining randomly chosen images during training [4]. That would be useful in
improving the performance of the model over a wide range of environmental conditions,
such as light and terrain conditions common in imagery from solar panels.

YOLOv7 fine-tuned the detection accuracy and efficiency with the addition of Dy-
namic Label Assignment and Extended Efficient Layer Aggregation Networks, respec-
tively [114]. This allowed the model to dynamically perform label assignments during
training to improve accuracy in complicated situations, for example, in detecting sun
panel installations in cluttered urban environments with multiple overlapping objects.
This enhanced efficiency of performance enables YOLOv7 to allow real-time analysis for
monitoring over a wide area using aerial or satellite imagery.

Indeed, another important achievement was brought about by the YOLOv8 [9] upon
the incorporation of transformers in the respective architectures such that the model
gained its capacity to capture long-range dependencies found in images. In other words,
for the detection of solar panels, the model will easily manage larger-scale and wide-
area imagery in a better manner to attain panel detection across vast solar farms or
highly concentrated urban areas. YOLOv8 also introduced variants at different scales-
small, medium, and large balance performance across a wide range of computational
environments, from high-performance GPUs used for processing large satellite datasets
to lower-power edge devices found in drones [53]. Sophisticated data augmentation
techniques, such as CutMix and MixUp, were also introduced; this had the effect of
allowing the model to generalize well to different conditions, including those due to time
of day or weather patterns commonly present in the imagery of solar panels.

YOLOv9 [115] introduced self-supervised learning techniques that reduce the need for
large labeled datasets; these are often hard and expensive to get in satellite and aerial
imagery [53]. The fact that it is possible to develop decent models with less labeled
data is relevant due to the challenge of creating such large labeled datasets to detect
solar panels. YOLOv9 even further improved multi-scale feature fusion, thus becoming
effective in spotting solar installations of small sizes in an urban or rural context. It is
better suited for large-scale deployment into monitoring at a regional level with varying
panel sizes and types. Increased accuracy and reduced reliance on labeled data are some
of the key advantages for YOLOv9 in large-scale deployments.
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The most recent version YOLOv10 [113] came up with an overall efficiency-accuracy-
driven design strategy, which has holistically optimized both post-processing and model
architecture to minimize computational redundancy and further improve accuracy. This
will be useful in many end-to-end detection tasks, such as identifying solar panels
from satellite images, for which both efficiency and accuracy are of the highest order.
YOLOv10 replaces non-maximum suppression (NMS) with consistent dual assignments,
which leads to a much faster inference without loss of accuracy. Its stronger architecture-
large-kernel convolution combined with self-attention mechanisms-allows it to learn finer
details, including distinguishing solar panels from similarly-shaped objects in complex
scenes [113]. Due to the lightweight design, YOLOv10 inherently enables efficiency on
inference for edge devices, including drones, and is super ideal for real-time monitoring
applications.

3.4 Evaluation Metrics

This study assesses performance using multiple evaluation metrics grouped into cate-
gories: conventional metrics (Recall, Precision, F1 Score, Mean Average Precision (mAP)
and Matthews Correlation Coefficient (MCC) and robustness metrics (Affinity and Di-
versity). These metrics together provide an analysis of the model’s performance and
robustness.

3.4.1 Conventional Metrics

True Positives, True Negatives, False Positives, and False Negatives

The foundation of many evaluation metrics in classification tasks involves the following
four quantities, derived from the confusion matrix. The confusion matrix is a type of
table used in the evaluation of performance for a classification model. It allows you to
view the predictions of classes by the model against the actual classes:

• True Positives (TP): The number of correctly identified positive cases.

• True Negatives (TN: The number of correctly identified negative cases.

• False Positives (FP): The number of negative instances incorrectly identified as
cases.

• False Negatives (FN): The number of positive instances incorrectly identified
as negative.

These quantities are essential for the construction of the confusion matrix, which
provides a summary of prediction results for a classification problem [90].
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Recall

Recall [110], also known as Sensitivity or True Positive Rate, measures the ability of a
model to correctly identify all relevant instances from specific class. It is defined as:

Recall = TP

TP + FN

This metric is critical in scenarios where missing a positive instance has significant
consequences [21]. High recall is essential in fields such as medical diagnostics and
security, where failing to detect positive instances can lead to severe repercussions.

Interpretation of Values

• High Recall (close to 1): Indicates that the model identifies most positive
instances, minimizing false negatives. This is desirable in applications requiring
comprehensive detection of positive instances.

• Low Recall (close to 0): Indicates that the model misses many positive in-
stances, which is detrimental in critical applications where capturing all relevant
instances is crucial.

Precision

Precision, or Positive Predictive Value, measures the accuracy of the positive predictions
made by the model. It is defined as:

Precision = TP

TP + FP

This metric is crucial for understanding the model’s performance and represents the
cost of false positives is high [106]. High precision is vital in applications such as spam
detection and financial fraud detection, where false positives can lead to unnecessary
costs or actions.

Interpretation of Values

• High Precision (close to 1): Indicates that the model’s positive predictions are
mostly correct, minimizing false positives. This is desirable in applications where
false positives can lead to unessential actions.

• Low Precision (close to 0): Indicates that the model makes many incorrect
positive predictions, suggesting a significant number of false positives.
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F1 Score

The F1 Score is the harmonic mean of Precision and Recall, providing a single metric
that balances both concerns. It is calculated as:

F1 Score = 2× Precision× Recall
Precision + Recall

The F1 Score [16] ranges from 0 to 1, where a higher score indicates a better bal-
ance between precision and recall. This metric is particularly useful when dealing with
imbalanced datasets, where a high F1 score indicates that the model maintains a good
balance between capturing positive and avoiding false positive instances.

Interpretation of Values

• High F1 Score (close to 1): Indicates a good balance between precision and
recall.

• Low F1 Score (close to 0): Indicates poor performance in either precision,
recall, or both.

Mean Average Precision (mAP)

Mean Average Precision [41] is used to evaluate object detection systems. It combines
the precision-recall curve into a single value by computing the average precision (AP)
across all recall levels for each class, then averaging these values:

AP =
n∑

k=1
(Rk −Rk−1)Pk

where Rk and Pk are the recall and precision at the k-th threshold. The mAP for C
classes is defined as:

mAP = 1
C

C∑
c=1

APc

mAP ranges from 0 to 1, where a higher value indicates better overall performance
[28]. This metric is crucial for evaluating models in tasks where multiple classes and
varying thresholds need to be considered, such as object detection in images.

Interpretation of Values

• High mAP (close to 1): Indicates robust performance across different classes
and recall thresholds.

• Low mAP (close to 0): Indicates poor performance, whereby the model has
difficulty maintaining high precision and recall across different classes and thresh-
olds.
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Matthews Correlation Coefficient (MCC)

The Matthews Correlation Coefficient (MCC) [15] is a comprehensive metric that ac-
counts for all elements of the confusion matrix, providing a balanced measure even when
class distributions are uneven. The MCC is defined as:

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

The MCC is particularly valuable in binary classification problems with imbalanced
class distributions, providing a more balanced evaluation contrary to accuracy, which
can be misleading in such scenarios.

Interpretation of Values

• High MCC (close to +1): Indicates excellent predictive performance.

• Low MCC (close to 0): Indicates performance no better than random chance.

• Negative MCC (close to -1): Indicates significant inverse relationship between
predictions and actual values.

3.4.2 Robustness Metrics
Affinity

Affinity [36] measures how much the results predicted agree with the expected results
after applying a stochastic augmentation strategy. It characterize the impact of data
augmentation on model performance by evaluating the shift in data distribution and its
effect on the model’s accuracy. Affinity is defined as:

Affinity = A(m, D′
val)−A(m, Dval)

where A(m, D) represents the accuracy of the model m on dataset D, and D′
val is the

validation set after applying the augmentation strategy. High affinity indicates that the
model’s performance remains stable despite changes in the data distribution [1].

Interpretation of Values

• High Affinity (close to 0): Indicates robustness to changes in data distribution,
with similar performance before and after augmentation. Zero affinity suggests
that the model can generalize well to augmented data, maintaining its predictive
capabilities even when the input data is affected by significant transformations.

• Low Affinity (far from 0): Indicates significant performance degradation due
to data augmentation, suggesting a lack of robustness. Low affinity implies that
the model is ultra-sensitive to shifts in distribution introduced by various applied
augmentations, potentially overfitting to the original data distribution and failing
to adapt to new variations.
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Diversity

Diversity [36], in this regard, quantifies how much variability and complexity exists in
augmented data generated from a given dataset. The metric measures how far-reaching
are the changes applied to a dataset such that a model is exposed to a wide variation
during training. High diversity forces the model to generalize better by not fitting specific
patterns in the training data. One can then define and quantify diversity using a variety
of metrics, including entropy or variance-based measures that capture the extent of the
spread of the augmented data in the feature space.

One way to quantify diversity is by measuring the entropy of the augmented data dis-
tribution. Entropy provides a statistical measure of randomness, reflecting the variability
within the augmented dataset. It is defined as:

Diversity = −
n∑

i=1
pi log(pi)

where pi represents the probability of occurrence of the i-th augmentation transfor-
mation. Higher entropy indicates greater diversity, suggesting that the augmented data
covers a wider range of variations.

Interpretation of Values

• High Diversity: 0.7-1.0 Indicates that the augmented data includes a wide
range of variations, leading to better generalization and robustness of the model.
High diversity is achieved through different augmentations that significantly alter
the input data. These transformations ensure the model is exposed to a broad
spectrum of potential real-world scenarios.

• Low Diversity: 0.0 - 0.4 Indicates that the augmented data is very similar to
the original data, offering limited new information to the model. This can result
from slight adjustments like small changes in brightness, which do not provide
extensive and valuable variations. Low diversity may limit the model’s ability to
generalize to unseen data.

3.4.3 Summary
These combined metrics provide a full evaluation of the model’s performance. Recall
and F1 Score give information about the balance between precision and recall; MAP
gives a measure for the general performance of the detection; and MCC provides a
robust measure accounting for all dimensions of prediction accuracy. Affinity and Di-
versity guarantee that there is reliability and variation in the predictions realized, hence
supporting the strength of this approach.
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4 Results

In this chapter, we outline the outcomes of our study in solar panel detection using
different methods. The major goal was to establish the efficacy of existing approaches
and make suggestions for possible enhancements. Initially, the established methods are
tested using SolarFinder as the baseline, as it applies several techniques to detect solar
panels, such as VGG, Random Forest, and Logistic Regression. However, these globally
applicable methods are performing suboptimally in tests with different image types.

To address these limitations, more advanced models, specifically YOLOv3 and YOLOv5,
were implemented and evaluated. The results indicate that both YOLO models signifi-
cantly outperform the baseline methods proposed in other well-established approaches,
with YOLOv5 yielding better results compared to YOLOv3. Based on these findings,
further improvements are explored by applying model soups, particularly uniform soup
and greedy soup, to enhance the detection accuracy and robustness of YOLOv5.

The detailed results of our evaluations, comparisons, and enhancements are presented
in the following sections, providing a comprehensive evaluation and analysis of the per-
formance and effectiveness of various methods.

4.1 Evaluation of baseline methods
Random Forest

The Random Forest model was assessed using two datasets: SolarFinder and FCDPA.
The model’s performance was evaluated across various data augmentations, such as
adjusting contrast and brightness, vertical flipping, rotation, translation, and horizontal
flipping of the image.

F1 scores trained on the SolarFinder dataset were disappointingly low. Specifically,
Contrast augmentation scored an F1 of 0.07, while the original dataset without aug-
mentation returned the highest score of 0.72. The other augmentations—Vertical Flip,
Rotation, Horizontal Flip, Translation, Brightness, Channel Shift—turned in similar
scores of between 0.25 and 0.31. Performance on the FCDPA dataset was equally poor,
with F1 scores ranging from 0.07 to 0.26, showing that the Random Forest model per-
formed generally poorly in recognizing solar panels independent of any data augmen-
tations. Therefore, there was no need to assess other evaluation metrics because the
overall performance was already poor for this use case.

Additionally, while SolarFinder’s approach may have benefited from masking buildings
using OpenStreetMap [80] data to filter out non-relevant regions, such a preprocessing
step was not implemented. This likely contributed to the lower accuracy and overall poor
performance of the Random Forest model in the experiments. Without the additional
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spatial information provided by OpenStreetMap [79], the model struggled to distinguish
between solar panels and other rooftop features, leading to high false positive and false
negative rates.

The major issue with the Random Forest model in this case was the failure to generalize
across different datasets. The mixed dataset containing a diversity of images of solar
panels from multiple sources posed a huge challenge to the model. Clearly, it is reflected
that there is a great performance gap between the two datasets, SolarFinder versus
FCDPA. This lack of generalizability may mean that the model had to be too biased on
the dataset in use by SolarFinder and failed to adapt to the variability present in our
mixed dataset.

VGG Model

In this section, the performance of the VGG model is tested for the SolarFinder and
FCDPA datasets, which are designed for binary classification—whether an image con-
tains a solar panel PV or not. The datasets are balanced in terms of the number of
images from both categories to avoid overrepresentation of any class.

Various augmentations were made on the data for testing, including contrast, flipping
both vertically and horizontally, rotation, translation, changing brightness and channel
shift. Main Metrics: The F1 score and Recall were the main metrics used for the
evaluation indicators of the performance of the model in classifying imbalanced and
binary datasets.

Results are presented showing F1 scores ranging from 0.08 to 0.14 for the VGG model
performance on the SolarFinder dataset. While the original dataset scored 0.14, all other
augmentations such as contrasting, flipping, rotating, and changing brightness returned
F1 scores of less than 0.13. The implication is that VGG performed very poorly on this
dataset, irrespective of the augmentation applied.

On the other hand, the results of the FCDPA dataset were higher, between 0.22
and 0.42, its original version and most augmented one reached an F1 score of 0.42.
Considering SolarFinder, this is a high increase, but still really underlines the limits
of the general applicability of VGG for finding solar panels in real conditions across
datasets.

These performance gaps therefore indicate that the performance of VGG, although
quite good in specific contexts such as SolarFinder, generalizes poorly on other datasets.
For instance, it can be seen that Matthew’s correlation coefficient for SolarFinder is
0.18, comparable to our results, overfitting to some dataset-specific characteristics and
generalizing on new data. Overfitting in this case could be avoided with some solid
preprocessing, for example, masking of non-relevant regions using OpenStreetMap [80]
data was not part of the preprocessing pipeline.

Although the literature presented VGG as very powerful for SolarFinder, results
showed that it is not flexible enough to be used globally for detecting solar panels
without huge modifications. The following table represents some hyperparameters that
have been used to train our VGG model:
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Hyperparameter Value
Input size 150 x 150 x 3
Batch size 32
Optimizer RMSprop (lr = 2e-5)
Loss function Binary Crossentropy
Epochs 50
Augmentation techniques Rotation, Translation, Brightness, Channel Shift
Early stopping patience 20
Checkpoint Best model saved

Table 4.1: Hyperparameters for training the VGG model.

The hyperparameters, combined with binary labels and balanced datasets, were aimed
at achieving the most reliable results possible within the constraints of the datasets and
augmentations. However, further refinement is required for more generalized solar panel
detection across diverse datasets.

Logistic Regression

The Logistic Regression model was also assessed using the SolarFinder and FCDPA
datasets. Its performance was evaluated under various data augmentations, including
contrast adjustment, vertical and horizontal flipping, rotation, translation, brightness
adjustment, and channel shifting.

The F1 scores for the Logistic Regression model on the SolarFinder dataset were gen-
erally low. On the original dataset, the model achieved a very low F1 score of 0.07.
However, the application of different data augmentations such as contrast and bright-
ness adjustments, significantly improved performance, raising the F1 scores to 0.70 and
0.72, respectively. Other augmentations, including vertical and horizontal flips, rotation,
translation, and channel shifting, yielded more moderate improvements, with F1 scores
ranging between 0.27 and 0.33. These results suggest that while logistic regression ben-
efits from specific augmentations, it struggles to perform effectively without them. In
contrast, the model’s performance on the FCDPA dataset was consistently lower, with
F1 scores ranging from 0.07 to 0.30 across all augmentations. This indicates that the
logistic regression model is highly sensitive to dataset-specific characteristics and may
not generalize well across different data sources.

Comparing these results to the ones reported by SolarFinder for a logical regression
model, we see our implementation is far from comparable in performance. SolarFinder
reports the value of Matthew’s correlation coefficient was 0.15. As can be visibly seen
from the benchmarked numbers given for these datasets, our results, and particularly
those of the FCDPA dataset, fell short, meaning Logical Regression struggles with gen-
eralization when applied to mixed datasets.

The primary challenge with the Logistic Regression model in this context is its reliance
on dataset-specific features and the effectiveness of certain augmentations leading to
inaccurate results. The mixed dataset, incorporating images from various vendors and
sources, represents significant difficulties for the model. This can be evidenced by the
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variable and unstable performance across different augmentations and datasets. This
variability suggests that while Logistic Regression can perform adequately under certain
conditions, it lacks the robustness needed for diverse, real-world applications.

Another issue, representing the poor performance of Logistic Regression, is the possible
lack of feature diversity in the training dataset. Unlike deep learning models like VGG,
which automatically extract intricate features, Logistic Regression relies very much on
the quality and relevance of input features. This might be what probably underlay the
inconsistencies exhibited by the model in the different augmentations and datasets.

4.2 Evaluation of YOLOv3 & YOLOv5
This section provides an in-depth evaluation of YOLOv3 and YOLOv5 models for solar
panel detection using diverse datasets and augmentation techniques. The performance
of these models is assessed based on key metrics such as F1 Score, Recall, and Matthews
Correlation Coefficient (MCC), highlighting their effectiveness compared to traditional
models like SolarFinder, VGG, and Random Forest.

YOLOv3

In this regard, the YOLOv3 model is tested on a mixed dataset that incorporates multiple
data sources, providing a holistic assessment of its performance about a wide array of
data augmentations, as mentioned in the previous sections about Logistic Regression,
VGG, and Random Forest.

To summarize the model performance, the F1 Score is evaluated averaging 0.64 by
the YOLOv3 model over different data augmentation instances. This metric reflects a
good balance between precision and recall in the detection process of solar panels. To
compare it with the SolarFinder-specific models that recorded as low as 0.07 F1 score,
this YOLOv3 model represented huge improvements. It indicates that YOLOv3 general-
izes well across augmentations, making it quite effective for improving these limitations
noticed in previous methods. On the other hand, the Recall score achieved by YOLOv3
was 0.60, thus very good in terms of correctly classifying the solar panels regardless
of augmentation techniques applied. In comparison, Recall scores obtained using the
models from SolarFinder were far lower and spanned between 0.08 to 0.72. This shows
that, unlike SolarFinder, YOLOv3 can hold up its sensitivity and perform much better
on the solar panel detection task even on these data variations, but also not optimal for
this specific use-case.

MCC of YOLOv3 delivered an average MCC of 0.43, which shows balanced perfor-
mance with good predictive accuracy. This score indicates that the model was able to
tell between the positive and negative instances of solar panels, considering true pos-
itives and negatives. In comparison, SolarFinder models were observed to have lower
MCC values, thus showing the superiority of YOLOv3 models in making more accurate
predictions across the mixed dataset.

These results clearly show that the model of YOLOv3 outperforms all models specific
to SolarFinder on all relevant performance metrics. More importantly, the F1 score,
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Recall, and MCC values combined indicate that besides being more accurate, YOLOv3
is also more consistent in performance. This gain is important in practical applications
where reliable detection of solar panels is required with diverse and challenging datasets.

Table 4.2: YOLOv3 Hyperparameters
Hyperparameter Default Value
epochs 100
batch-size 16
imgsz 640
optimizer SGD
learning-rate (lr0) 0.01
weight-decay 0.0005
momentum 0.937
warmup-epochs 3
warmup-momentum 0.8
warmup-bias-lr 0.1

YOLOv5

The YOLOv5 model has demonstrated strong performance in detecting solar panels, as
shown by its comprehensive evaluation metrics. The model’s performance, particularly
in terms of accuracy, precision, recall, and mean Average Precision (mAP), indicates its
suitability for this task.

The evaluation of the YOLOv5 model incorporates a range of important metrics that
collectively provide a comprehensive understanding of its performance and can be seen
in Table 4.3.

Table 4.3: YOLOv5 Results
Metric Value Interpretation
Accuracy 0.9168 The YOLOv5 model achieved an accuracy of 91.68%

on the mixed dataset, indicating high overall prediction
correctness.

mAP@0.5 0.7822 The mean Average Precision (mAP) at an IoU threshold
of 0.5 reflects effective detection performance.

mAP@0.5:0.95 0.4426 The mAP averaged over IoU thresholds from 0.5 to 0.95
shows good performance across varying overlap criteria.

Matthews Cor-
relation Coeffi-
cient (MCC)

0.8190 An MCC of 0.8190 indicates strong correlation between
predicted and actual classifications.

Precision 0.9763 A precision of 97.63% reflects a low false positive rate
and effective positive prediction accuracy.
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Metric Value Interpretation
Recall (Sensi-
tivity)

0.9020 With a recall of 90.20%, the model effectively identified
most of the actual positive cases.

F1 Score 0.9377 The F1 Score of 0.9377 indicates a strong balance be-
tween precision and recall.

The initial models tested on the SolarFinder dataset (VGG, Logistic Regression and
Random Forest) showed significantly lower performance compared to the YOLOv5 model.

VGG, Logistic Regression, and Random Forest models had accuracies around 7% to
13% on the SolarFinder dataset, indicating poor performance. In contrast, the YOLOv5
model’s accuracy of 0.9168 and its high values in precision, recall, and MCC highlight its
superior detection capabilities. The mAP@0.5 and mAP@0.5:0.95 scores further confirm
the model’s effectiveness in accurately detecting solar panels under various conditions.

The YOLOv5 model demonstrates robust performance in solar panel detection tasks.
The model’s high accuracy, precision, recall, F1 score, and MCC, together with high
mAP scores, make it a reliable and effective tool for solar panel detection. This perfor-
mance significantly surpasses the results obtained from traditional models, underscoring
the advantages of using advanced object detection frameworks like YOLOv5 for such
applications.

In this study, a total of 36 models were trained using a wide range of hyperparameters
to optimize the performance of the YOLOv5 architecture for solar panel detection. The
hyperparameters explored during the experiments are displayed in Table 4.4. These
range from learning rates, gains of the loss function, image augmentation parameters
to many others, which try to reach the best possible detection accuracy across diverse
environments. We trained the models using the CUDA03 cluster provided by TU Graz,
which contains 8x Tesla P100 GPUs that allow efficient large-scale training. In total,
training took around three months, a substantial amount of time due to the computation-
intensive nature of the process and the large number of experiments conducted.
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The following table presents the range of hyperparameters that were varied during the
training of the models. These hyperparameters were carefully selected and adjusted to
optimize the performance of the YOLOv5 model. Each hyperparameter was explored
within the given range to balance the trade-offs between model accuracy, convergence
speed, and generalization capability.

Hyperparameter Range
lr0 (Initial learning rate) 0.001 - 0.0001
lrf (Final learning rate factor) 0.1 - 0.2
momentum (SGD momentum/Adam beta1) 0.85 - 0.95
weight decay (Optimizer weight decay) 1e-4 - 5e-4
warmup epochs (Warmup epochs) 2.0 - 5.0
warmup momentum (Initial momentum during warmup) 0.7 - 0.9
warmup bias lr (Initial bias learning rate during warmup) 0.05 - 0.15
box (Box loss gain) 0.02 - 0.1
cls (Class loss gain) 0.2 - 0.5
cls pw (Class positive weight for BCELoss) 0.9 - 1.1
obj (Object loss gain) 0.5 - 0.9
obj pw (Object positive weight for BCELoss) 0.9 - 1.1
iou t (IoU training threshold) 0.15 - 0.25
anchor t (Anchor multiple threshold) 3.5 - 4.5
fl gamma (Focal loss gamma) 0.0 - 1.0
hsv h (HSV-Hue augmentation) 0.01 - 0.02
hsv s (HSV-Saturation augmentation) 0.6 - 0.8
hsv v (HSV-Value augmentation) 0.3 - 0.5
degrees (Image rotation) 0.0 - 5.0
translate (Image translation) 0.05 - 0.2
scale (Image scale) 0.8 - 1.1
shear (Image shear) 0.0 - 5.0
perspective (Image perspective) 0.0 - 0.001
flipud (Image flip up-down probability) 0.3 - 0.6
fliplr (Image flip left-right probability) 0.3 - 0.6
mosaic (Image mosaic probability) 0.8 - 1.0
mixup (Image mixup probability) 0.0 - 0.2
copy paste (Segment copy-paste probability) 0.0 - 0.2

Table 4.4: YOLOv5 hyperparameters used for the training
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4.3 Outcomes of YOLOv5 Enhancement with Model Soups

In the process of enhancing the performance of our object detection models, the model
soup technique has been explored. It involves combining multiple trained models to
capitalize on their collective strengths. The primary goal of this work is to apply both
the uniform and greedy model soup approaches to determine which would lead to the
best results.

The enhancements achieved through the model soups are visible in Figure 4.1. This
figure provides a detailed comparison of the accuracies for each model, having the results
from the uniform and greedy model soups. The visual representation highlights the
significant improvements realized by the greedy model soup.

Figure 4.1: All models results
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In the figure, it can be observed that the individual model accuracies vary, with model
11 achieving the highest accuracy of 0.9168. The uniform model soup, represented in
Figure 4.1, shows a slight decrease in accuracy to 0.9158, suggesting that averaging the
models did not result in a substantial improvement.

While the uniform model soup did provide some slight gain in stability, it still could
not surpass the accuracy of the best of individual models. On the other hand, greedy
model soup has rather impressive accuracy gains, establishing it as the superior solution
for our purpose. Moving forward, based on these results, the greedy model soup will
be used as a primary method. This solution also satisfies most of the performance
objectives, hence providing a robust and reliable solution for our object detection tasks.
The results in Figure 4.1 showcase the progress and advancements of the greedy model
soup.

However, the greedy model soup stands out prominently in the figure, with an accu-
racy of 0.9569. This result underlines the effectiveness of selectively combining models
based on their contributions, leading to a significant enhancement in overall performance.
Detailed results for the greedy model, the best-performing model, are shown in Table
4.5.

Metric Value

Accuracy 0.9569
Sensitivity 0.9580
Specificity 0.9544
Precision 0.9794
Recall 0.9580
F1 Score 0.9686
MCC 0.9005
mAP@0.5 0.8208
mAP@0.5:0.95 0.5139

Table 4.5: Performance metrics of the greedy model

These results confirm that a greedy model significantly outperforms the conventional
methods, and more importantly, underline the important role of model selection and
combination strategies in achieving superior performance for solar panel detection tasks.
The high values across multiple metrics indicate the efficacy and reliability of the greedy
model and hence make it a robust choice for practical applications.

The following figure illustrates the result of detection in a sample test image to show-
case the efficiency of the greedy model in the detection task. In the figure, the bounding
boxes of the model perfectly identify the solar panels, compromising their locations and
classifying them as panels with high accuracy in diverse conditions. This visual repre-
sentation underscores the high accuracy, precision, and robustness of the greedy model,
as discussed in the evaluation metrics.
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Figure 4.2: YOLOv5 results
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4.4 Affinity and Diversity of the greedy model
The analysis demonstrates that the augmentation strategies achieve a harmonious bal-
ance between Diversity and Affinity within the greedy soup model.

Figure 4.3: Affinity and diversity results

It can be seen that these augmentations are introducing a high level of variation into
the dataset from the Diversity values. Translation has a Diversity value of 0.5562, thus
most add variation to the dataset and are therefore likely to make the model more able
in generalization by exposing it to more different ranges of data scenarios. In contrast,
Rotation adds the least variation, with its Diversity value the lowest at 0.4771. Overall,
the Diversity values suggest that these augmentations are effective at increasing the
variety in the training data, which is generally beneficial for preventing overfitting.

The Affinity values at the start are close to zero and differ slightly among the various
augmentations. The highest Affinity is that of brightness augmentation, with 0.0191,
which means it is closest to the real data distribution. The lowest Affinity is Contrast
with -0.0615, indicating that it adds the most out-of-distribution data. The overall
Affinity across all datasets is very slightly negative (-0.0092), suggesting that the aug-
mentations introduce a small amount of distribution shift. While this shift is generally
minimal, it could potentially introduce noise if the Affinity is too low, particularly in
the case of Contrast.

In summary, the augmentation strategies considered in this study appear to be well-
balanced: there is sufficient diversity to improve model generalization without excessively
compromising affinity. On the other hand, low-affinity augmentations like contrast may
require some care since they can introduce harmful distribution shifts.
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4.5 Number of panels in Vienna

Disclaimer: The number of panels computed in Vienna is based on the available data
but lacks validation against ground-truth data. Therefore, the panel count should be in-
terpreted with caution.

This subsection aims at analyzing the trend of the installation of solar panels in Vi-
enna, Austria, from 2015 to 2021. We extract the areal images for this time frame and
count the number of solar panels using the best-performing greedy model. By using this
strategy, useful information about the trend and adoption of solar energy in Vienna is
being gathered. This reflects the progress of the city toward sustainable energy solu-
tions. The following analysis gives the count of solar panels detected in each year, hence
clearly showing the growth trajectory and outlining significant changes or patterns in
the installation of solar panels across Vienna over the period.

Figure 4.4: Number of solar panels in Vienna

The trend line, as indicated in Figure, shows a steady increase in the solar panels
installed in Vienna from the year 2015 to 2021. This is an upwards trajectory that
signifies the commitment of Vienna to sustainable energy solutions and the growing
adoption of solar technology. The number of installed solar panels increases constantly
from 2015 to 2019. This growth can be attributed to favorable government policies,
incentives for renewable energy adoption, and increased public awareness of the benefits
of solar energy. Installation numbers grew from 22,930 in the year 2015 to 28,192 in 2019,
showing an average annual growth rate of about 5.6%. The COVID-19 pandemic brought
huge challenges to the construction industry worldwide in the year 2020 [98]; Austria
was no exception [99]. These have caused supply chain disruptions, labor shortages, and
delays in projects connected with the installation of solar panels and, as such, impacted
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construction activities. Despite all odds, Vienna increased from 28,192 to 29,416 panels
from the year 2019 to 2020. This smaller growth rate, compared to the previous years,
gives a reflection of the pandemic but shows the resilience from ongoing projects and
commitment to renewable energy by the city.

Acknowledging that the figures presented are derived from an automated detection
model rather than official statistics is essential. While the data obtained provides a very
good indication of the trend in growth, it is not an indication of the exact number of
installations, as inaccuracies in the model and limitations to detection may take place.
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5 Conclusion and Outlook

5.1 Conclusion

This thesis presents the application of the deep learning architecture YOLOv5 for detect-
ing solar panels from satellite images, motivated by the growing interest in monitoring
renewable energy. Traditional detection methods, on the other hand, which rely on
handcrafted features and classical machine learning, often lack generalization ability or
accuracy when applied to complex and diverse geographical areas. The YOLOv5-based
model in this study had an F1 score of 0.93 and an MCC of 0.81, proving its robustness
and high precision under various conditions. These metrics are indicative of the actual
performance that one might get from the model while detecting solar panels. Finally,
the case study on the growth of solar panels in Vienna from 2015 to 2021 further demon-
strated the model’s effectiveness by revealing distinct trend lines in solar panel adoption.
Lacking official data to confirm such findings constitutes a limitation and a need for more
complete and accessible datasets in order to facilitate validation. Therefore, this study
has demonstrated how deep learning models, particularly YOLOv5, have great potential
to expand the scope of solar panel detection from satellite imagery. If optimized properly,
such models can ensure the reliable data required for renewable energy infrastructure
expansion. The contribution of this work, therefore, lies in demonstrating that deep
learning holds significant potential and can substantially contribute to both geospatial
analysis and environmental planning.

5.2 Outlook

While this work has achieved promising results with the YOLOv5 architecture for the
detection of photovoltaic panels, there are several aspects that can be enhanced and
developed further. Indeed, further research could be conducted from any of the following
standpoints:

Robustness Across Ecologically Variable Settings: Among the primary weak-
nesses of the model, when implemented in the scope of this thesis, was that regarding
performance where environmental conditions are not like those represented in the dataset
from which the models were derived. Future works should be directed toward the exten-
sion of this dataset to a much wider range of environmental views, such as tropical, polar,
and arid regions. The incorporation of images across seasons takes into consideration
factors such as snow cover, foliage, or cloud cover, thus ensuring that this model performs
well throughout the year. This would, in turn, make the model much more generalizable
into new and unseen environments, reducing the risk of performance degradation when
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used on global-scale detection.
Transfer Learning and Fine-Tuning: Given how promising the results with YOLOv5

were, leveraging this benefit, transfer learning became a good approach to better the per-
formance for specific contexts. Transfer learning allows the fine-tuning of a pre-trained
model using regionspecific data, which improves its accuracy for localized applications.
It also minimizes the time and computation resources required for retraining. This will
equally reduce overfitting by freezing early model layers and allowing later layers to be
tuned in to capture local features that could improve both accuracy and generalization.

Multimodal Data Integration: Other than satellite images, there is a scope of
integrating multispectral and LiDAR data among other sources, which can increase the
accuracy in object detection. Multispectral images have been used to distinguish solar
panel areas from other similar-looking objects due to the fact that different spectra high-
light features not usually evident in common optical images. LiDAR data, on the other
hand, incorporate height and spatial orientation information; hence, such data would be
more appropriately used for recognizing rooftop solar panels, as it could identify objects
by their level. The combination of these data modalities can bring significant reductions
in false positives, especially for dense urban settings or regions with structurally similar
looking objects.

Temporal Analysis: This study will logically be extended to conduct a temporal
analysis in order to track the growth of solar panels. Timeseries satellite image analysis
will allow researchers to quantify the rate at which solar panel installations occur in
certain regions and give useful patterns in the adoption of renewable energies. A temporal
perspective may also be used to help policymakers and city planners in assessing how
well solar energy initiatives have fared with time.

In summary, this study has provided a high-level foundation in the domain of detecting
solar panels using YOLOv5. Enhancing generalizability, transfer learning to enhance
the model, incorporation of multimodal data, and understanding of temporal dynamics
are all avenues where future work needs to be concentrated for wider applications of
renewable energy monitoring and geospatial analytics.

5.3 Final Thoughts
This work is a significant contribution to the progress in the detection of solar panels from
satellite images. This is a research that unlocks the power of deep learning, more precisely
the YOLOv5 architecture and model soups for highly accurate and reliable detection in
diverse settings. The findings will not only add to the present knowledge base on the
distribution and growth of solar panels but also probably result in further research
in this area. Subjected to further research and development, techniques and insights
proposed in this work could very well become a part of transformative advancements in
the monitoring of renewable energy resources and eco-conscious decision-making. The
integration of advanced technologies into practical applications is in its evolution stage;
however, this work signifies a step toward a sustainable data-driven future.
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[8] Peter Bühlmann. “Bagging, Boosting and Ensemble Methods”. In: Handbook of
Computational Statistics (Jan. 2012). doi: 10.1007/978-3-642-21551-3_33.

[9] Nicolas Carion et al. “End-to-End Object Detection with Transformers”. In:
Proceedings of the European Conference on Computer Vision (ECCV) (2020),
pp. 213–229.

[10] Nicholas Carlini and David Wagner. “Towards Evaluating the Robustness of Neu-
ral Networks”. In: IEEE Symposium on Security and Privacy (2017), pp. 39–57.

[11] Fabio Maria Carlucci et al. AutoDIAL: Automatic DomaIn Alignment Layers.
2017. arXiv: 1704.08082 [cs.CV]. url: https://arxiv.org/abs/1704.08082.

[12] Yair Carmon et al. Unlabeled Data Improves Adversarial Robustness. 2019. arXiv:
1905.13736 [stat.ML].

79

https://paperswithcode.com/paper/performance-of-human-annotators-in-object
https://paperswithcode.com/paper/performance-of-human-annotators-in-object
https://doi.org/10.6084/m9.figshare.3385780
https://doi.org/10.6084/m9.figshare.3385780
https://figshare.com/articles/dataset/Distributed_Solar_Photovoltaic_Array_Location_and_Extent_Data_Set_for_Remote_Sensing_Object_Identification/3385780/4
https://figshare.com/articles/dataset/Distributed_Solar_Photovoltaic_Array_Location_and_Extent_Data_Set_for_Remote_Sensing_Object_Identification/3385780/4
https://figshare.com/articles/dataset/Distributed_Solar_Photovoltaic_Array_Location_and_Extent_Data_Set_for_Remote_Sensing_Object_Identification/3385780/4
https://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A%3A1010933404324
http://dx.doi.org/10.1023/A%3A1010933404324
https://doi.org/10.1007/978-3-642-21551-3_33
https://arxiv.org/abs/1704.08082
https://arxiv.org/abs/1704.08082
https://arxiv.org/abs/1905.13736
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